Пигментный обмен в норме и при желтухах. Пигментный обмен

Пигментный обмен

Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по – видимому, близки НЬ - это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов- меланина, липохромов и т. д.

ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):


Рис. 1. Процессы обезвреживания свободного (непрямого) билирубина и мезобилиногена (уробилиногена) в печеночной клетке.

Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

Римскими цифрами обозначены этапы обезвреживания

1. I этап - захват билирубина (Б) печеночной клеткой после отщепления альбумина;

2. II этап - образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

3. III этап - выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

Методы определения билирубина и его метаболитов

Определение билирубина в сыворотке крови

В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества–акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

ХОД ОПРЕДЕЛЕНИЯ

В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция


Для определения связанного билирубина измерение проводят спустя 5-10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500-560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

Ряд веществ - гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота - вызывают интерференцию.

Постоение калибровочного графика при методе ендрассика.

Способ I - Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30-35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

Таблица. Определение связанного билирубина

· Способ второй – выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин –эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)

Определение билирубина в сыворотке крови прямым фотометрическим методом

Определение общего билирубина прямым фотометрическим методом чрезвычайно просто, удобно, не требует венепункции (исследуется капиллярная кровь), может повторяться неоднократно в течение суток. Недостатком метода является невозможность определить фракции билирубина, меньшая точность при выраженном гемолизе.

Несмотря на то, что при этом определяется только общий билирубин, этот подход представляет значительный интерес в неонатологии, так как у новорожденных детей преобладает одна производная билирубина, практически равная концентрации общего билирубина. Билирубин представляет собой пигмент с ярко выраженной желтой окраской. Его спектральная кривая поглощения имеет максимум на длине волны 460 нм (синяя область спектра). Измеряя поглощение на этой длине волны можно было бы определить концентрацию общего билирубина в крови. Однако ряд факторов усложняют такое измерение. Билирубин является сильным поглотителем и поэтому оптимальная для построения фотометра плотность 0,3-0,5 Б оптической плотности достигается в кювете с длиной оптического пути примерно 250 микрометров (0,25 мм).

Изготовить такую кювету непросто. Кроме того, фотометрирование непосредственно крови усложняется присутствием форменных элементов крови, рассеянием света на них, а также интерференцией билирубина с гемоглобином, который частично поглощает свет в синей области спектра. Поэтому для фотометрирования необходимо, во-первых, получить образцы плазмы крови, а, во-вторых, нужно исключить влияние гемоглобина, присутствующего в небольшом количестве в плазме. Плазму для фотометрирования получают на лабораторных центрифугах в гепаринизированных гематокритных капиллярах.

Любого органа.

Как отмечалось (см. главу 13), начальным этапом распада является разрыв одного метинового мостика с образованием вердоглобина. В дальнейшем от вердоглобина отщепляются и . В результате образуется биливердин, который представляет собой цепочку из четырех пиррольных колец, связанных метановыми мостиками. Затем биливердин, восстанавливаясь, превращается в – , выделяемый с и поэтому называемый . Образовавшийся называется непрямым (неконъю-гированным) . Он нерастворим в , дает непрямую с диазореактивом, т.е. протекает только после предварительной обработки .

Рис. 16.4. Нормальный обмен уробилиногеновых тел (схема).

Образовавшийся в прямой вместе с очень небольшой частью непрямого выводится с в тонкую кишку. Здесь от прямого отщепляется и происходит его с последовательным образованием мезобилирубина и мезобилиногена (уробилиногена). Принято считать, что около 10% восстанавливается до мезобилиногена на пути в тонкую кишку, т.е. во внепеченочных желчных путях и в желчном пузыре. Из тонкой кишки часть образовавшегося мезобилиногена (уробилиногена) резорбируется через кишечную стенку, попадает в воротную вену и током переносится в , где расщепляется полностью до ди- и трипирролов. Таким образом, в норме в общий круг кровообращения и мезобилиноген не попадает.

Основное количество мезобилиногена из тонкой кишки поступает в толстую и здесь восстанавливается до стеркобилиногена при участии анаэробной микрофлоры. Образовавшийся стеркобилиноген в нижних отделах толстой кишки (в основном в прямой кишке) окисляется до стерко-билина и выделяется с калом. Лишь небольшая часть стеркобилиногена всасывается в систему нижней полой вены (попадает сначала в геморроидальные вены) и в дальнейшем выводится с . Следовательно, в норме человека содержит следы стеркобилиногена (за сутки его выделяется с до 4 мг). К сожалению, до последнего времени в клинической практике стеркобилиноген, содержащийся в нормальной , продолжают называть уробилиногеном. На рис. 16.4 схематично показаны пути образования уробилиногеновых тел в человека.

В клинической практике укоренился термин «уробилиноген ». Под этим термином следует понимать те производные (билиру-биноиды), которые обнаруживаются в . Положительная на уробилиноген может быть обусловлена повышенным содержанием того или иного билирубиноида в и является, как правило, отражением патологии.

Определение в клинике содержания в (общего, непрямого и прямого), а также уробилиногена имеет важное значение при дифференциальной диагностике желтух различной этиологии (рис. 16.5). При гемолитической желтухе («надпеченочной») вследствие повышенного и разрушения происходит интенсивное образование непрямого в ретикулоэндотелиальной системе (см. рис. 16.5, б). оказывается неспособной утилизировать такое большое количество непрямого , что приводит к его накоплению в и . В при этом синтезируется повышенное количество прямого , который с попадает в кишечник. В тонкой кишке в повышенных количествах образуется мезобилиноген и в последующем – стеркобилиноген. Всосавшаяся часть мезобилиногена утилизируется , а резорбирующийся в толстой кишке стеркобилиноген выводится с . Таким образом, для гемолитической желтухи в типичных случаях характерны следующие клинико-лабораторные показатели: повышение уровня общего и непрямого в , в – отсутствие (непрямой не фильтруется почками) и положительная на уробилиноген (за счет повышенного попадания в и стеркобилиногена, а в тяжелых случаях – и за счет мезобилиногена, не утилизирующегося ); лимонно-желтый оттенок кожных покровов (сочетание желтухи и анемии); увеличение размеров селезенки; ярко окрашенный кал.

Рис. 16.5. Патогенез билирубинемий при различных патологических состояниях (схема). а - норма; б - ; в - застой в желчных капиллярах ; г - поражение паренхиматозных ; 1 - кровеносный капилляр; 2 - ; 3 - желчный капилляр.

При механической (обтурационной, или «подпеченочной») желтухе (см. рис. 16.5, в) нарушен отток (закупорка общего желчного протока камнем, головки поджелудочной железы). Это приводит к деструктивным изменениям в и попаданию элементов ( , ) в . При полной обтурации общего желчного протока не попадает в кишечник, поэтому образования в кишечнике билирубиноидов не происходит, кал обесцвечен и на уробилиноген отрицательная. Таким образом, при механической желтухе в повышено количество общего (за счет прямого), увеличено содержание и , а в – высокий уровень (прямого). Клиническими особенностями обтурационной желтухи являются яркая желтушная окраска , бесцветный кал, зуд (раздражение нервных окончаний , отлагающимися в ). Следует заметить, что при длительно сохраняющейся механической желтухе могут существенно нарушаться функции , в том числе одна из главных – детоксикационная. В этом случае может произойти частичный «отказ» от непрямого , что может привести к его накоплению в

Билирубин образуется при распаде старых эритроцитов вретикулоэндотелиальной системе. Освобождающийся при этом изгемоглобина гем разлагается. Железо реутилизируется, а изтетрапиррольного кольца путем комплекса сложных окислительно-восстановительных реакций образуется билирубин. Другими егоисточниками являются миоглобин, цитохромы. Этот процесс происходит вклетках РЭС, в основном в печени, селезенке, костном мозге, которыевыделяют в кровь свободный или непрямой билирубин, нерастворимый вводе. За сутки распадается около 1% эритроцитов и образуется 100-250 мг билирубина, 5-20% его образуется из незрелых, преждевременно разрушенных эритроцитов. Это так называемый ранний (шунтовой) билирубин.

Значительно, от 30 до 80% увеличивается доля раннего билирубинапри заболеваниях и поражениях с неэффективным эритропоэзом. Этосвинцовое отравление, железодефицитная анемия, пернициозная анемия,талассемия, эритропоэтическая порфирия, сидеробластическая анемия.

При этих заболеваниях имеет место увеличенная экскреция уробилинас калом, вследствие увеличенного общего оборота желчных пигментов, безукорочения жизни эритроцитов периферической крови. Кроме того раннийбилирубин образуется из неэритроцитарного гема, источником которогослужат, печеночные протеиды (миоглобин, каталаза, триптофанпирролаза

печени). Транспортируется прямой билирубин в связанной с альбуминомформе.

Обмен билирубина, В обмене билирубина печень выполняет 3функции: захват (клиренс) гепатоцитом из крови синусоида билирубина;связывание билирубина с глюкуроновой кислотой (конъюгация); выделениесвязанного (прямого) билирубина из печеночной клетки в желчныекапилляры (экскреция).

Рис. 7. Схема транспорта билирубина в печеночной клетке .

А - разрушенные эритроциты; Б -ранний билирубин; В - свободный (непрямой)билирубин. 1 - синусоид; 2 - гладкаяэндоплазматическая сеть; 3 - ядро; 4 -пластинчатый комплекс; 5 - желчный каналец; 6 ~ кишка; 7 - цитоплазматические протеины.

Непрямой (свободный) билирубин(рис.7) отделяется от альбумина вЦитоплазменной мембране, внутриклеточныепротеины (V и Z) захватывают билирубин.

Печеночная мембрана активно участвует взахвате билирубина из плазмы. Затем непрямой билирубин в клеткепереносится в мембраны гладкой эндоплазматической сети, где билирубинсвязывается с глюкуроновой кислотой. Катализатором этой реакции являетсяспецифический для билирубина фермент уридилдифосфат (УДФ) -глюкуронилтрансферраза. Соединение билирубина с глюкуроновой кислотойделает его рстворимым в воде, что обеспечивает переход его в желчь,фильтрацию в почках и быструю (прямую) реакцию с диазореактивом,почему и называется прямым (связанным) билирубином.

Транспорт билирубина. Выделение билирубина в желчь - этоконечный этап обмена билирубина в гепатоцитах. Печень ежедневно выделяет до 300 мг билирубина и способна вылелить пигмента в 10 раз

больше, чем его образуется, т.е. в норме имеется значительный функциональный резерв для экскреции билирубина. При ненарушенномсвязывании переход билирубина из печени в желчь зависит от скоростисекреции желчи. Он переходит в желчь на билиарном полюсе гепатоцита спомощью цитоплазматических мембран, лизосом и пластинчатогокомплекса. Связанный билирубин в желчи образует макромолекулярный сложнй коллоидный раствор (мицеллу) с холестерином, фосфолипидами и солями желчных кислот. С желчью билирубин попадает в тонкийкишечник. Кишечные бактерии восстанавливают его с образованием бесцветного уробилиногена. Из тонкого кишечника часть уробилиногенавсасывается и попадает в воротную вену и вновь поступает в печень(кишечно-печеночная циркуляция уробилиногена). В печени пигментполностью расщепляется.

Печень поглощает его не полностью, и небольшое количествоуробилиногена попадает в системную циркуляцию и выводится с мочой.Большая часть образующегося в кишечнике уробилиногена окисляется впрямой кишке до коричневого пигмента уробилина, который экскретируетсяс фекалиями.

В норме присутствующий в плазме билирубин по большей части(примерно 95%) не конъюгирован и, поскольку он связан с белками, он не фильтруется почечными клубочками и в моче здоровых людей не обнаруживается. Билирубинурия отражает повышение концентрацииконъюгированного билирубина в плазме, и это всегда - признак патологии.

Частое проявление заболевания печени - желтуха, пожелтение тканейиз-за отложения билирубина. Клинически желтуха может не определяться до тех пор, пока концентрация билирубина в плазме не превысит ве рхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л. Гипербилирубинемия может быть результатом повышенного образования билирубина, нарушения его метаболизма, снижения экскреции или сочетания этих факторов.

ОБМЕН ЖЕЛЕЗА, ПОРФИРИНОВ, ГЕМОПРОТЕИНОВ

Обмен железа.

В сутки в организм человека с пищей поступает около 20 г (0,36 мМоль) железа, но всасывается около 10% (2 мг). При железодефицитнойанемиии оно повышается до 3 мг. Основным местом всасывания являетсятощая кишка. Всасывание определяется состоянием запасов железа в организме. Оно увеличивается при уменьшении резервов железа ворганизме, уменьшается когда запасы его достаточны. Но всасывание железа может увеличиваться независимо от его запасов в организме при усиленном эритропоэзе.

Железо лучше всасывается в двухвалентной форме, но с пищейпоступает трехвалентное железо. Под влиянием желудочного сока железоосвобождается из пищи и превращается из трехвалентного в двухвалентное.Аскорбиновая кислота облегчает всасывание железа, а содержащаяся в сухих завтраках фитиковая кислота, фосфаты и оксалаты снижают его всасывание, образуя с железом нерастворимые комплексы.

Общее содержание железа в организме 4 г (70 мМоль). Две трети еговключены в гемоглобин. 35% депонировано в печени, селезенке, костноммозге. Основное депо - печень, содержащая до 500 мг железа.Депонирующим железо белком является ферритин, транспортирующим - трансферин. Около 15% железа содержится в миоглобине. Минимальноеколичество в железосодержащих ферментах: каталазе (антиоксидант) ицитохромах - гемопротеинах, являющихся ферментами, катализирующимимногие окислительные процессы в организме. Только 0,1% железа содержится в плазме, где оно связано с транспортным белком - трансферрином, каждая молекула которого связывает два иона железа. В плазме трансферрин насыщен железом на одну треть. В тканях он находится в форме ферритина. Свободное железо очень токсично исвязывание его с белками делает его нетоксичным, что обеспечиваетбезопасный транспорт и хранение железа в организме. При нормальном

обмене железо, откладывающееся в гепатоцитах в форме ферритина, в реакции Перлеа не выявляется.

Здоровый человек теряет в сутки около 1 мг железа, а женщины вовремя менструации еще 15-20 мг в месяц. До 70% железа выделяется черезпищеварительный тракт, остальное - с мочой и через кожу.

Метаболизм порфиринов

Гем - железосодержащее тетропиррольное красящее вещество. Он я вляется составной частью кислородсвязывающих белков и различныхкоферментов оксидоредуктаз. Почти 85% биосинтеза тема осуществляется в костном мозге, остальное в печени. В синтезе гема участвуютмитохондрии и цитоплазма. Начиная с реакции соединения глицина исукцинил КоА через ряд химических превращений, начинающихся вмитохондриях, продолжающихся в цитоплазме с участием ее ферментов, азатем вновь в митохондриях до образования протопорфириногена IX . Послечего посредством специального фермента феррохелатазы в молекулувключается атом двухвалентного железа. Образованный гем или феррум-протопорфирин IX включается в гемоглобин или миоглобин, где он связаннековалентно, или в цитохром, с которым связывается ковалентно.

Гемопротеины.

Гемопротеины представлены гемоглобином, миоглобином и цито хромами.

Гемоглобин - пигмент крови, переносящий кислород, содержится в эритроцитах . Он состоит из белка глобина и четырех молекул гема. Гемоглобин взрослого (НвА) содержит две пары полипептидных цепей - альфа и бета, каждая из которых связана с одной молекулой гема. Гем в процессе транспорта обратимо связывается с кислородом. Миоглобин связывает кислород в скелетной мускулатуре, Цитохромы - ферменты, катализирующие многие окислительные процессы в организме.

Гемоглобин - переносчик кислорода в организме, находится в эритроците. Главная функция эритроцитов - транспорт кислорода от легких в ткани и углекислого газа от тканей обратно в легкие. Высшиеорганизмы нуждаются для этого в специальной транспортной системе, таккак молекулярный кислород плохо растворим в воде: в 1 л плазмы крови растворимо только около 3,2 мл кислорода. Содержащийся в эритроцитах белок гемоглобин способен связать в 70 раз больше - 220 мл кислорода в литре. Содержание Нв в крови составляет 140-180 г/л у мужчини 120-160 г/л у женщин, т.е. вдвое выше по сравнению с белками плазмы (60- 80 г/л). Поэтому Нв вносит наибольший вклад в образование рН-буфернойемкости крови.

При связывании кислорода с атомом железа в геме (оксигенация Нв) и отщеплении кислорода (дезоксигенация) степень окисления атома железа неменяется. Окисление двухвалентного железа до трехвалентного в геме носитслучайный характер. Окисленная форма Нв, метгемоглобин, не способнапереносить кислород. Доля метгемоглобина поддерживается ферментами(редуктаза) на низком уровне и составляет 1-2%.

В первые три месяца внутриутробной жизни образуетсяэмбриональные Нв. Затем до рождения доминирует фетальный Нв (НвF),который постепенно заменяется на первом месяце жизни на НвА.Эмбриональный и фетальный Нв обладают более высоким сродством ккислороду по сравнению с НвА, так как они должны переносить кислород изсистемы материнского кровообращения.

ОБМЕН МЕДИ За сутки с пищей поступает 2-3 г меди. Она всасывается в

кишечнике и поступает в печень. 80-90% меди связывается c образующимся в печени церулоплазмином. Частично входит в состав некоторых других ферментов: супероксиддисмутазы,

цитохромоксидазы. Незначительная часть может находиться в связи с

белком (купропротеиды) в печени, в плазме крови в виде лабильного к омплекса с альбумином и выводится с мочой.

Церулоплазмин является основным переносчиком меди в кровь, откуда он избирательно захватывается нуждающимися в нем органами, В ыделяется медь в основном с желчью.

Помимо высокой оксидазной и антиоксидантной активностицерулоплазмин выступает катализатором при образовании гема, с пособствуя переходу неактивного, несвязывающего кислород т рехвалентного железа в активное двухвалентное железо. То есть п ринимает большое участие в процессах кроветворения - в образовании г емоглобина.

УЧАСТИЕ ПЕЧЕНИ В ЭНЕРГООБМЕНЕ Печень стоит на пути движения веществ из пищеварительного т ракта в общий кровоток, что позволяет этому органу регулировать в крови концентрацию метаболитов, прежде всего глюкозы, липидов, а минокислот. Печень поглощает большое количество глюкозы, превращая ее в гликоген. Это обеспечивает запасание энергетического материала, способного отдать организму 400 кКал. В присутствии кислорода большинство клеток организма получают энергию за счет полного окисления питательных веществ (углеводов, аминокислот, липидов). При этом часть энергии сохраняется. Наиболее важной формой сохранения химической энергии в клетке является нуклеотидныйкофермент - аденозинтрифосфат (АТФ). Он образуется за счетокислительного фосфорилирования (АДФ + фосфат), с расходованиемэнергии (эндоэргическая реакция), тогда как на расщепление АТФ на АДФи фосфат высвобождается энергия (высоко экзоэргическая реакция).

Рис.8 Запасание и использование энергии в животном организме энергия, высвобождающаяся при окислении мономеров (аминокислот,моносахаров, жирных кислот и глицерола), используется на синтез АТФ изАДФ и Н 3 Р0 4, а запасенная в АТФ энергия затрачивается на выполнение всехвидов работ, свойственных животному организму (механическойхимической, осмотической и электрической) (цит. По Бышовскому А.Ш.Терсеневу О.А., 1994).

Рис. 9 Реакция высвобождения энергии

Высвобождение энергии происходит при взаимодействии АТФ с ионом+НОН (рис. 9)

Менее активно образуется АТФ при анаэробном гликолизе. Прианаэробном разрушении глюкозы образуется лактат и незначительная часть энергии идет на синтез АТФ но это дает возможность клетке длясуществования в условиях недостатка или отсутствия кислорода. При

аэробном гликолизе окисление одной молекулы глюкозы сопровождаетсясинтезом 32 молекул АТФ.

Значительным источником энергии являются жирные кислоты. В виде ацил-карнитина они попадают в митохондриальный матрикс. где под вергаются бета-окислению с образованием ацил-КоА. В результате по следующих реакций деградации жирной кислоты синтезируется 106 моле кул АТФ. что соответствует свободной энергии 3300 кДж/моль. что значительно выше в сравнении с распадом глюкозы.

Поэтому жиры представляют собой очень выгодную форму сохраненияэнергии.

При недостаточном энергообеспечении (сахарный диабет,интенсивные энергозатраты, не восполняемые за счет поступления глюкозыизвне, голодание) в печени ускоряются процессы распада жирных к ислот, сопровождающиеся интенсификацией кетогенеза. Источник ж ирных кислот - липолиз в жировых депо. Кетоновые тела, в основном, ацетоацетат , служат источником энергии для других тканей, прежде всего для мышц, мозга. При достаточном энергообеспечении организма

жирные кислоты используются для синтеза в печени триацилглицеридов,

фосфолипидов, которые активнее включаются в транспортные формы

Свои энергетические потребности печень обеспечивает главным о бразом за счет кетокислот, образующихся при дезаминировании и пе реаминировании аминокислот. Использовать в качестве энергетического м атериала ацетоацетат печень не может, т.к. отсутствует трансфераза, обеспечивающая образование его активной формы - ацетоацктил-КоА.

По мнению Л. Страйр печень, не используя в качестве источника энергии ацетоацетат является «альтруистическим органом».

Пигментный обмен

К.м.н. А. В. Змызгова

Под пигментным обменом подразумевают обычно обмен важнейших пигментов крови - гемоглобина и продуктов его распада- билирубина и уробилина. В настоящее время является доказанным и общепризнанным, что разрушение эритроцитов происходит в клетках ретикуло-эндотелия (печень, костный мозг, селезенка, сосуды). Купферовские клетки печени при этом играют главную и активную роль (A. Л. Мясников, 1956). При разрушении гемоглобина от него отщепляется простетическая группа, которая теряет атом железа и далее превращается в желчные пигменты - билирубин и биливердин. В просвет желчных капилляров билирубин выводится эпителиальными клетками. Существующий кишечно-печеночный кругооборот желчных пигментов, хорошо описанный A. Л. Мясниковым, можно схематически изобразить так: печень - желчь - кишечник - портальная кровь - печень - желчь. Для исследования пигментного обмена обычно пользуются определением билирубина в сыворотке крови, уробилина в моче и стеркобилина в кале.

Билирубин сыворотки крови подвержен колебаниям как при физиологических, так и при патологических состояниях. В норме уровень билирубина крови зависит от объема физиологического гемолиза. Содержание его увеличивается при физической работе (повышенный гемолиз), при голодании. После приема пищи билирубин крови у здоровых лиц понижается вследствие его выделения с желчью (Б. Б. Коган, 3. В. Нечайкина, 1937). При поражении печени, желчных путей, повышенном гемолизе билирубин в крови повышается. Нормальные цифры билирубина крови, по данным различных авторов, варьируют в довольно значительных пределах. Так, по ван ден Бергу, они колеблются в пределах от 0,1 до 0,6 мг%, по Бокальчуку и Герцфельду - от 1,6 до 6,25 мг% и т. д. Наряду с количественным определением билирубина большое значение имеет изучение качества его. Ван ден Берг в 1910 г. сообщил, что билирубин по своему качеству неоднороден и состоит из двух фракций, отличающихся друг от друга по поведению с диазореактивами. Один билирубин он назвал "прямым", или "быстрым", а другой - "непрямым". Раньше считали, что "непрямой" билирубин превращается в "прямой" в клетках печеночного эпителия путем отщепления от "непрямого" билирубина белковых субстанций. За последнее время работами ряда авторов (Schmid, 1956; Billing a. Lathe, 1958) установлено, что "прямой" билирубин образуется из "непрямого" в результате соединения последнего с глюкуроновой кислотой. Образовавшийся в ретикулоэндотелиальной системе из протопорфирина непрямой, или так называемый свободный, билирубин (гемобилирубин) выделяется в кровь, так что у здорового человека в крови находится 0,5-0,75 мг% "непрямого" билирубина (И. Тодоров, 1960). Этот билирубин, благодаря наличию в его молекуле глобина, является соединением, нерастворимым в воде и дающим непрямую реакцию с диазореактивом. В крови гемобилирубин соединяется с альбумином, образуя коллоидный раствор, не проходящий через почечный фильтр. С током крови "непрямой" билирубин попадает в печень, где от него отщепляется альбумин и присоединяется глюкуроновая кислота, т. е. образуется глюкуронид билирубина, который является прямым билирубином или холебилирубином. Этот процесс осуществляется в паренхиме печени при участии фермента трансферазы (Schmid, 1961). Билирубинглюкуронид хорошо растворяется в воде, легко проходит почечный фильтр, свободно попадает в желчь и дает быструю реакцию с диазореактивами. Благодаря соединению с глюкуроновой кислотой жирорастворимый, ядовитый для мозговой ткани "непрямой" билирубин становится растворимым и утрачивает токсичность. При физиологических состояниях в крови и моче прямого билирубина нет, так как между кровеносными и желчными капиллярами существует барьер из печеночных клеток, который не позволяет ему перейти в кровь. При паренхиматозных и застойных желтухах этот барьер разрушается и прямой билирубин из крови переходит в мочу. Методом хроматографического исследования установлено, что прямой билирубин может присоединять к себе одну или две молекулы глюкуроновой кислоты, т. е. образовывать моно- или диглюкуронид билирубина. По данным Hoffman (1961), билирубин - диглюкуронид желчи составляет 75-80%.

В настоящее время точно еще не установлено, в каких именно клетках печени осуществляется конъюгация билирубина. По мнению 3. Д. Шварцмана (1961), образование моноглюкуронида возможно в ретикуло-эндотелиальных клетках, а диглюкуронида - в печеночных. Билирубин-глюкуронид, достигнув в составе желчи толстого кишечника, распадается на ряд переходящих друг в друга билирубиноидов, образуя в конечном итоге стеркобилин и уробилиноген. Последний всасывается кишечным эпителием в кровь и через портальную систему возвращается в печень, где почти полностью улавливается у здоровых людей купферовскими клетками. Небольшая часть уробилина попадает в большой круг кровообращения и выводится из организма с мочой. Таким образом, уробилин, хотя и является пигментом мочи, но в норме находится в ней в незначительных количествах (чаще в виде следов). По Тервену, в суточном количестве мочи у здоровых лиц содержится около 1 мг уробилина. Попадая вместе с желчью в пищеварительный тракт, желчные пигменты подвергаются здесь воздействию бактерий. При этом билирубин восстанавливается в стеркобилиноген и в таком виде выводится с калом. Под влиянием света и воздуха стеркобилиноген легко окисляется, превращаясь в стеркобилин, суточное количество которого, по Тервену, колеблется от 50 до 200 мг. Если уробилинурия отражает функциональное состояние печени, то, по мнению многих авторов, повышенное количество стеркобилина в кале свидетельствует об интенсивности гемолиза. Поэтому ряд исследователей придает большое значение отношению количества уробилина мочи к стеркобилину (коэффициент Адлера), равному в норме 1:30, 1:40.

Согласно имеющимся в литературе сообщениям, а также данным, полученным нами, пигментный обмен страдает при многих инфекционных заболеваниях, что приводит к увеличению содержания уробилина в моче и более или менее значительной гипербилирубинемии (А. М. Ярцева, 1949; А. В. Змызгова, 1957; И.К.Мусабаев, 1950; Б. Я. Падалка, 1962, и др.). Однако выраженная желтуха при этом встречается редко. Имеются только единичные указания о наличии желтухи у больных брюшным тифом (Н. И. Рагоза с соавторами, 1935), сыпным тифом (А. М. Сигал), инфекционным мононуклеозом (К. М. Лобан, 1962) и другими заболеваниями. Острые малярийные гепатиты также могут сопровождаться желтухой и осложняться острой дистрофией печени (Е. М. Тареев, 1946).

Нарушение пигментного обмена при инфекционных заболеваниях в одних случаях связывают с поражением печени и эндокринно-нервного аппарата, регулирующего ее функции, в других - с повышенным гемолизом.

Определение общего, "прямого" и "непрямого" билирубина в сыворотке имеет большое клиническое значение при дифференциальных диагнозах различных видов желтухи.

В свете новых данных о механизме образования и выделения билирубина в настоящее время по-другому трактуется и патогенез желтух. Оказалось, что прежнее деление желтух на паренхиматозные, механические и гемолитические не отражает всего многообразия патогенетических вариантов этого заболевания. По современной классификации (А. Ф. Блюгер и М. П. Синельникова, 1962) желтухи делятся на две группы:

  1. желтухи, не связанные с нарушением тока желчи
    • надпеченочные желтухи [показать]

      Надпеченочные желтухи сопровождаются накоплением в сыворотке крови свободного "непрямого" билирубина, в то время как количество "прямого" билирубина остается нормальным. К ним относят врожденную и приобретенную гемолитические желтухи. Увеличение непрямого билирубина в крови происходит вследствие усиленного распада эритроцитов с последующей гиперпродукцией билирубина. Возникает такое большое количество желчного пигмента, что нормальная выделительная способность печени оказывается недостаточной. К надпочечным желтухам относятся также следующие так называемые ретенционные желтухи, когда билирубин образуется в повышенном количестве и не выделяется из организма:

      1. Болезнь Мейленграхта - Жильбера, которая возникает в связи с врожденной недостаточностью фермента трансглюкуронидазы в клетках печени, в результате чего "непрямой" билирубин не может превратиться в "прямой" и накапливается в крови.
      2. Семейная ядерная желтуха Криглера-Наджара развивается в результате врожденного отсутствия ферментных систем, обеспечивающих связь билирубина с глюкуроновой кислотой: при этом в сыворотке крови накапливается высокая концентрация "непрямого" билирубина, оказывающего токсическое действие на ядра головного мозга.
      3. Постгепатитная функциональная гипербилирубинемия может быть связана с нарушением механизма захвата билирубина из крови (Schmid, 1959) или с повышенным гемолизом, который,по мнению Kalk (1955), развивается на почве накопления аутоантител, обнаруживаемых с помощью реакции Кумбса. Известно, что при вирусных заболеваниях изменившиеся под действием вируса эритроциты могут приобретать антигенный характер, в результате чего в организме начинают вырабатываться антитела, в том числе и гемолизины (И. Мадьяр, 1962). Надпеченочные желтухи протекают обычно с нормальной активностью альдолазы, трансаминаз и щелочной фосфатазы, с неизменной электрофореграммой и нормальными осадочными пробами. При гемолитических желтухах выражены гепатолиенальный синдром, ретикулоцитоз, сниженная резистентность эритроцитов и анемия.
    • печеночные желтухи [показать]

      Печеночные (гепатоцеллюлярные) желтухи развиваются вследствие первичного поражения печени и встречаются при болезни Боткина, циррозах печени, токсических и холангиолитических гепатитах, инфекционном мононуклеозе, холестатических гепатозах и некоторых других заболеваниях. При этих желтухах увеличивается главным образом количество прямого билирубина в крови, так как образование билирубинглюкуронида при этих желтухах страдает мало, но вследствие нарушения балочной структуры печени или закупорки билиарной системы он не может выделяться в кишечник и проникает в кровяное русло. Содержание непрямой его фракции тоже возрастает, но в значительно меньшей степени. Процесс гипербилирубинемии при паренхиматозном гепатите является сложным и может зависеть от следующих причин:

      1. от нарушения экскреции билирубина из печеночных клеток в желчные капилляры;
      2. от затрудненного оттока желчи в силу явлений внутрипеченочной обтурации глюкуронид-билирубин забрасывается в кровяное русло (регургитации желчи);
      3. от нарушения синтеза глюкуронидов в микросомах гепатоцитов (страдают трансферразные системы);
      4. от нарушения поступления билирубина в пораженные печеночные клетки.

      Страдает функция "захватывания" билирубина гепатоцитами.

  2. желтухи, связанные с нарушением тока желчи
    • подпеченочные желтухи [показать]

      Подпеченочные желтухи развиваются при желчнокаменной болезни, опухолях и стенозах в области желчных путей, а также при бактериальных холангитах. При подпеченочных или так называемых застойных желтухах также увеличивается главным образом "прямой" билирубин, что связано с переполнением желчных путей вследствие закупорки, разрыва их и последующего перехода желчи в кровяное русло. Одновременно слегка повышается содержание "непрямого" билирубина, так как последний переполняет печеночную клетку, которая не в состоянии перевести весь "непрямой" билирубин в "прямой", что вызывает его повышение в сыворотке крови (Й. Тодоров, 1960). Из сказанного ясно, что количественное определение общего "прямого" и "непрямого" билирубина в сыворотке крови имеет большое клиническое значение. Выявление повышенного "прямого" или "непрямого" билирубина служит наиболее точным методом дифференцирования гемолитических желтух от застойных и паренхиматозных. Для определения общего билирубина и его фракций в настоящее время отдают предпочтение методу Ендрассика, Клеггора и Трафа, который является более точным, чем метод ван ден Берга. При определении билирубина по ван ден Бергу для осаждения белков применяется этиловый спирт, с которым в осадок увлекается и часть адсорбированного на нем пигмента, вследствие чего показатели билирубина могут быть понижены. Принцип метода Ендрассика, Клеггора и Трафа заключается в том, что в присутствии раствора кофеина билирубин (свободный и связанный) легко образует азобилирубин, определяемый колориметрически. В одной пробирке, добавляя кофеин, определяют общий билирубин, в другой (без кофеина) - прямую его фракцию. Концентрация непрямого билирубина определяется по разности между общим и прямым билирубином. В настоящее время определенное клиническое значение придают также вычислению билирубинового показателя (уровень связанной фракции по отношению к содержанию всего билирубина, выраженный в процентах). Так, по данным А. Ф. Блюгера (1962), общий билирубин у здоровых лиц колеблется в пределах 0,44-0,60 мг%, а билирубиновый показатель у них равен нолю. При болезни Боткина в преджелтушном периоде уже можно обнаружить незначительную гипербилирубинемию за счет прямой фракции. Количество билирубина в сыворотке крови в этот период может быть и нормальным, но и тогда признаком нарушения пигментной функции печени может служить наличие прямого билирубина. На высоте желтухи билирубиновый показатель может превышать даже 50%. В периоде выздоровления связанная фракция билирубина исчезает из крови очень медленно, в связи с чем даже при нормальном уровне билирубина еще длительное время остается прямой или замедленно прямой реакция ван ден Берга, что является важным признаком неполного выздоровления. Связанная фракция билирубина нередко обнаруживается и при безжелтуш-ных формах болезни Боткина, когда уровень общего билирубина не превышает норму. Билирубиновый показатель может также значительно возрастать при под-печеночных желтухах. При гемолитических желтухах этот показатель бывает значительно ниже, чем у больных с паренхиматозной или застойной печенью, и равняется 20% и ниже. При печеночной и подпеченочной желтухах при гипербилирубинемии, превышающей 1,5-2 мг%, билирубин в виде желчных пигментов появляется в моче. Отсутствие желчных пигментов в моче при гипербилирубинемии свидетельствует о гемолитической природе желтухи. Диагностическое значение имеет также и определение билирубина в моче.

      Уробилинурия обычно наблюдается в преджелтушном периоде эпидемического гепатита, а также на спаде желтухи. Последнее обстоятельство является признаком наступившего криза. Уробилинурия может сохраняться длительное время в период реконвалесценции и свидетельствовать о наличии незаконченного патологического процесса. На высоте желтухи при эпидемическом гепатите уробилин в моче, повышенный в преджелтушном периоде, может исчезнуть. При обтурационных желтухах уробилин в моче может отсутствовать долгое время. Одним из постоянных признаков гемолитических желтух является уробилинурия, которая связана с избыточным поступлением уробилина из кишечника и относительной недостаточностью функции печени (печень не успевает избыточное количество непрямого билирубина связать с глюкуроновой кислотой).

      Стеркобилин в кале при гемолитической желтухе повышается, а при холестетической форме болезни Боткина и при подпеченочных желтухах может длительное время наблюдаться ахолия. Изучение пигментной функции печени при желтухах различной этиологии хотя и может иметь диагностическое значение, однако путем определения общего билирубина и его фракций, уробилина в моче и стеркобилина в кале не всегда бывает возможным отдифференцировать один вид желтухи от другого. Наибольшие трудности встречаются при диагностике и дифференциальной диагностике холестатических, затяжных форм болезни Боткина с желтухами, развивающимися вследствие злокачественных новообразований в области гепато-панкреато-дуоденальной зоны, с циррозами печени и желчнокаменной болезнью. Для целей диагностики и дифференциальной диагностики желтух различного генеза в настоящее время применяется комплекс лабораторных методов исследования, который включает в себя ферментные пробы, определение белка, белковых фракций сложных белковых комплексов, коллоидные пробы, определение протромбинового индекса (нагрузка витамином К), пробы, основанные на изучении липоидной, углеводной, экскреторной функций печени и др. В связи с тем, что физиологическое значение этих показателей, механизм их изменений при патологических состояниях изложены при описании соответствующих видов обмена, в настоящем разделе мы ограничимся сводной таблицей этих показателей при желтухах различной этиологии (табл. 2).

      В клинике, руководимой А. Ф. Билибиным, для дифференциальной диагностики желтух различного генеза, помимо указанных лабораторных методов, с успехом применяется исследование содержания серомукоида, ставится проба Иргла, а также определяется вязкость сыворотки и плазмы. Серомукоид представляет собой сложный белковый комплекс, состоящий из белка и углеводных компонентов (гексозы, гексозамины и их производные). Процессы образования сывороточных гликопротеидов и их углеводных компонентов сравнительно мало изучены. Однако многочисленные экспериментальные данные и наблюдения клиницистов свидетельствуют о несомненной роли печени в их синтезе. При паренхиматозных гепатитах, а также при циррозах печени концентрация серомукоида в сыворотке крови понижается (Sarin с соавторами, 1961; Musil, 1961; А. Ф. Билибин, А. В. Змызгова, А. А. Панина, 1964), в то время как при желчнокаменной болезни она остается нормальной или слегка понижается, а при желтухах, развивающихся вследствие злокачественных новообразований, прогрессивно увеличивается по мере нарастания желтухи. Pagui (1960) считает, что быстрый и инфильтрирующий рост злокачественных опухолей способствует деполимеризации основного вещества соединительной ткани, богатой сахаридными группами с последующим переходом их в кровь, что приводит к повышению содержания серомукоида. Другие авторы (Kompecher с соавторами, 1961) повышение сывороточных мукоидов объясняют метаболизмом раковой ткани, так как в растущей опухоли усиленно происходит анаэробный гликолиз, в результате чего образуются различные углеводные компоненты, которые через расширенные лимфатические сосуды в повышенном количестве поступают в кровь. По их мнению, попадая в кровь, углеводные компоненты способствуют метастазированию.

      Проба Иргла, выявляющая патологические глюколипиды, у большинства больных эпидемическим гепатитом бывает отрицательной на всем протяжении болезни. У части больных, главным образом отягощенных различными сопутствующими заболеваниями, она может выпадать положительной (+ или ++), но по мере угасания клинических симптомов быстро становится отрицательной. При злокачественных новообразованиях, сопровождающихся желтухой, наблюдается совершенно иная динамика пробы Иргла. Степень помутнения ее прогрессивно увеличивается вплоть до появления флокуляции, и у таких больных она обычно бывает резко положительной (+++).

      Вязкость сыворотки и плазмы подвержена меньшим колебаниям, чем вязкость цельной крови, так как их состав отличается более значительным постоянством. Вязкость сыворотки и плазмы зависит в первую очередь от коллоидного состояния белка, а именно от величины и формы белковых молекул, сложной глобулярной структуры, степени электрической проводимости и других физико-химических свойств сыворотки и плазмы, а также от содержания в них солей и ионов. При различных патологических процессах в организме нарушается химический состав, физические и физико-химические свойства крови, что в свою очередь влечет за собой изменение вязкости. В настоящее время сравнительная вискозиметрия используется в качестве теста для быстрой диагностики эпидемического гепатита, так как вязкость сыворотки и плазмы при болезни Боткина понижается, в то время как при желтухах другой этиологии она остается нормальной или повышается (М. Яломицяну с соавторами, 1961; А. В. Змызгова, А. А. Панина, 1963). Вискозиметрия - простой доступный метод лабораторного исследования, что является большим преимуществом его перед другими громоздкими и дорогостоящими методами лабораторных исследований.

      Из табл. 2 видно, что нет ни одного лабораторного метода исследования, который бы являлся строго специфичным для того или иного вида желтухи. Однако комплексное, динамическое их определение в сочетании с клинической картиной болезни помогает клиницисту проводить дифференциальную диагностику, оценивать тяжесть патологического процесса, глубину поражения печени и степень наступившего выздоровления.

      Как известно, у ряда лиц после перенесенной болезни Боткина иногда длительное время сохраняется гипербилирубинемия, которая может развиваться вслед за перенесенным эпидемическим гепатитом либо но прошествии нескольких недель и месяцев после выздоровления. У одних лиц гипербилирубинемия носит затяжной характер, у других периоды повышенного содержания билирубина чередуются с временным снижением или даже с нормализацией уровня его. Природа этого явления до настоящего времени полностью еще не расшифрована. Одни исследователи подобную билирубинемию считают проявлением скрыто протекающего хронического гепатита, другие связывают его с развитием холангио-холециститов, дискинезий желчных путей, рецидивов болезни, а третьи высказываются в пользу гемолитического происхождения ее. Е. М. Тареев (1958) такую гипербилирубинемию считает последствием перенесенного эпидемического гепатита и указывает на возможность ее медленного, но полного обратного развития. На основании литературных данных (М. В. Мельк, Л. Н. Осипов, 1963) можно выделить три основные группы с затяжной билирубинемией:

      1. Гипербилирубинемия после перенесенного эпидемического гепатита, связанная с предшествующим поражением печеночной паренхимы или внепеченочной билиарной системы. В клинической картине этой группы больных обращает на себя внимание выраженная желтушность кожи и склер при повышении прямого билирубина по ван ден Бергу до 3,5 мг%. Нередко желтуха сопровождается ахоличностью стула, темной окраской мочи, диспепсическими явлениями, иногда болями в области печени. При этом концентрация непрямого билирубина не повышается, а функциональные пробы печени изменяются (повышена активность ферментов, снижена сулемовая проба, наблюдается патологическая сахарная кривая, снижена проба Квика - Пытеля). Осмотическая стойкость эритроцитов и количество ретикулоцитов не отклоняются от нормы.
      2. Гемолитические желтухи различной этиологии, протекающие по типу затяжных или перемежающихся гипербилирубинемией, по поводу которых больные госпитализируются с ошибочным диагнозом эпидемического гепатита. В анамнезе этой группы больных нет указаний на перенесенный гепатит, а желтуха нередко проявляется после каких-либо перенесенных интеркуррентных заболеваний (грипп, пневмония и т. д.). Желтушность склер и кожи при этом выражена слабо, диспептические расстройства и боли в области печени встречаются редко. Налицо гепатолиенальный синдром. Содержание билирубина повышается за счет главным образом непрямой его фракции. Реакция ван ден Берга, однако, быстрая, прямая или замедленная. У многих больных снижена осмотическая стойкость эритроцитов и повышена стойкость ретикулоцитов. Печеночные пробы изменяются мало.
      3. Группа больных с постгепатитным "гемолитическим компонентом" или так называемой постгепатитной функциональной гипербилирубинемией. Гемолитический компонент у них развивается непосредственно после эпидемического гепатита или спустя несколько месяцев и даже лет. Функциональная постгепатитная гипербилирубинемия свойственна лицам преимущественно молодого возраста. Постоянными кишечными симптомами постгепатитных гемолитических желтух являются: легкая желтушность кожи и склер, увеличение печени, частое увеличение селезенки, нормально окрашенный стул и моча, преобладание "непрямой" фракции билирубина сыворотки крови, а в случае нарастания обеих фракций билирубина "непрямой" билирубин увеличивается в большей степени. Возможно снижение осмотической стойкости эритроцитов, повышение количества ретикулоцитов. Постгепатитная функциональная гипербилирубинемия протекает с неизменными функциональными пробами печени. В гемограмме таких больных наблюдается лимфоцитоз, который не встречается при другой гемолитической желтухе (Л.П. Бриедис, 1962).

      Как уже указывалось выше, гемолитические явления после перенесенного эпидемического гепатита многие исследователи связывают с явлениями аутосенсибилизации, в результате чего в крови таких больных обнаружены противоэритроцитарные аутоантитела (Hirscher, 1950; Jandl, 1955). С. О. Авсаркисян (1963), не отрицая возможности аутосенсибилизации, считает, что в развитии затяжной или перемежающейся гипербилирубинемии играет роль и неполноценность печени, что подтверждается выявлением аутоантител против ткани печени у части больных.

      Изменение лабораторных показателей при желтухах различной этиологии

      Таблица 2

      Лабораторные показатели Печеночные желтухи
      болезнь Боткина цирроз печени холестатический гепатоз
      Билирубиновый показатель Выше 50% Выше 50% Выше 50%
      Желчные пигменты Положительные Положительные Положительные
      Уробилинурия Положительная в преджелтушном периоде и на спаде желтухи, на высоте желтухи может отсутствовать Положительная
      Альдолаза Рано и значительно повышается Норма
      Рано и значительно повышаются Норма или слегка повышена Часто норма
      Коэффициент де Ритиса Меньше 1 Меньше 1 -
      Щелочная фосфатаза Слегка повышена Легкое или умеренное повышение Умеренно повышена
      Белковые фракции Небольшая гипоальбуминемия и γ-глобулинемия Значительная гипоальбуминемия, резкая γ-глобулинемия Небольшое повышение α- и β-глобулинов
      Тимоловая проба Высокая Норма Норма
      Сулемовая проба Снижена Резко снижена Норма или слегка снижена
      Реакция Таката-Ара + или ++ Резко положительная ++++ Отрицательная
      Протромбин Снижен Снижен Норма
      Не нормализуется Не нормализуется -
      Холестерин Снижен Снижен Норма
      Эфиры холестерина Значительно снижены Значительно снижены Норма
      Сывороточное железо Повышено Нормально или слегка повышено Норма
      Медь сыворотки Нормальная или слегка повышена Чаще незначительно повышена Неизвестно
      Проба Иргла Отрицательная или слабо положительная, но быстро нормализуется Слабо положительная или положительная Неизвестно
      Серомукоид Снижен Резко снижен Неизвестно
      ДФА Умеренно повышен Умеренно повышен Слегка повышен
      Бромсульфалеиновая проба Снижена Снижена Нормальна или понижена
      Вязкость сыворотки и плазмы Снижена Нормальна или повышена Неизвестно
      Картина крови Лейкопения, нормоцитоз, макроцитоз Лейкопения, тромбоцитопения, макроцитоз Не характерно
      РОЭ Нормальна или замедлена Чаще ускорена Чаще ускорена

      продолжение: Изменение лабораторных показателей при желтухах различной этиологии

      Лабораторные показатели Надпеченочные желтухи Подпеченочные желтухи
      гемолитические функциональная гиперби-лирубинемия желчнокаменная болезнь опухоли
      Билирубиновый показатель Менее 20% Менее 20% Выше 50% Выше 50%
      Желчные пигменты Отрицательные Отрицательные Положительные Положительные
      Уробилинурия Резко положительная Положительная При полной закупорке отрицательная
      Альдолаза Норма Норма Норма или незначительное повышение
      Трансаминазы (аспарагиновая, аланиновая) Норма Норма Норма или незначительное повышение Норма или незначительное повышение
      Коэффициент де Ритиса Равен 1 Равен 1 Выше 1 Выше 1
      Щелочная фосфатаза Норма Норма Резко повышена Резко повышена
      Белковые фракции Норма Норма Увеличение α 2 -глобулинов при нормальном или слегка увеличенном количестве γ-глобулинов Увеличение α 2 -глобулинов при нормальном или слегка увеличенном содержании γ-глобулинов
      Тимоловая проба Норма Норма Норма Норма
      Сулемовая проба Норма Норма Норма Норма
      Реакция Таката-Ара Норма Норма Норма Норма
      Протромбин Норма Норма Норма Норма
      Протромбин после нагрузки витамином К - - Нормализуется В случае снижения нормализуется
      Холестерин Норма Норма Повышен Повышен
      Эфиры холестерина Норма Норма Норма Норма
      Сывороточное железо Возможно незначительное повышение Норма Норма или понижение Понижено
      Медь сыворотки Норма Норма Резко повышена Резко повышена
      Проба Иргла Отрицательная Отрицательная + или ++ с быстрой нормализацией Резко положительная +++
      Серомукоид Норма Норма Норма или повышение с быстрой нормализацией в динамике Нарастание в динамике
      ДФА Норма Норма Повышен Резко повышен
      Бромсульфалеиновая проба Норма Норма Нормальна или слегка понижена
      Вязкость сыворотки и плазмы Не характерна Чаще слегка понижена Повышена Повышена
      Картина крови Понижение резистентности эритроцитов Лимфоцитоз Лейкоцитоз, нейтрофиллез Лейкоцитоз, нейтрофиллез
      РОЭ Норма Норма Ускорена Ускорена

      ЛИТЕРАТУРА [показать]

Пигментный обмен

Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента-- желчного пигмента (билирубина). В настоящее время однако известны и другие пигменты, которые по хим. составу по - видимому, близки НЬ -- это-НЬ мышц, цитохромы, дыхательный фермент Варбурга (Warburg) и другие еще весьма мало изученные пигменты. Отделить процессы образования, превращения и распада этих пигментов от процессов обмена НЬ пока невозможно. В более широком смысле под П..о. можно подразумевать процессы образования, превращения и распада всех пигментов организма, т. е. как вышеперечисленных пигментов, группы НЬ, так и всех других пигментов-- меланина, липохромов и т. д.

ФИЗИОЛОГИЯ ОБМЕНА БИЛИРУБИНА

Процесс превращения свободного (непрямого) билирубина, образующегося при разрушении эритроцитов и распаде гемоглобина в органах ретикулоэндотелиальной системы (РЭС), в билирубин-диглюкуронид (связанный, или прямой билирубин) в печеночной клетке (рис. 1) осуществляется в три этапа (на рисунке обозначены римскими цифрами):

Рис. 1.

Бн - свободный (непрямой) билирубин; Б-Г - билирубин-глюкуронид (связанный, или прямой билирубин); Мбг - мезобилиноген (уробилиноген).

Римскими цифрами обозначены этапы обезвреживания

1. I этап -- захват билирубина (Б) печеночной клеткой после отщепления альбумина;

2. II этап -- образование водорастворимого комплекса билирубин-диглюкуронида (Б-Г);

3. III этап -- выделение образовавшегося связанного (прямого) билирубина (Б-Г) из печеночной клетки в желчные канальцы (проточки).

Дальнейший метаболизм билирубина связан с поступлением его в желчные пути и кишечник. В нижних отделах желчевыводящих путей и кишечнике под воздействием микробной флоры происходит постепенное восстановление связанного билирубина до уробилиногена. Часть уробилиногена (мезобилиноген) всасывается в кишечнике и по системе воротной вены вновь попадает в печень, где в норме происходит практически полное его разрушение (см. рис. 1). Другая часть уробилиногена (стеркобилиноген) всасывается в кровь в геморроидальных венах, попадая в общий кровоток и выделяясь почками с мочой в незначительных количествах в виде уробилина, который часто не выявляется клиническими лабораторными методами. Наконец, третья часть уробилиногена превращается в стеркобилин и выделяется с калом, обусловливая его характерную темно-коричневую окраску.

Методы определения билирубина и его метаболитов

Определение билирубина в сыворотке крови

В клинической практике используются различные методы определения билирубина и его фракций в сыворотке крови.

Наиболее распространенным из них является биохимический метод Ендрассика-Грофа . Он основан на взаимодействии билирубина с диазотированной сульфаниловой кислотой с образованием азопигментов. При этом связанный билирубин (билирубин-глюкуронид) дает быструю («прямую») реакцию с диазореактивом, тогда как реакция свободного (не связанного с глюкуронидом) билирубина протекает значтельно медленнее. Для ее ускорения применяют различные вещества-акселераторы, например кофеин (метод Ендрассика-Клеггорна-Грофа), которые освобождают билирубин из белковых комплексов («непрямая» реакция). В результате взаимодействия с диазотированной сульфаниловой кислотой билирубин образует окрашенные соединения. Измерения проводят на фотометре.

ХОД ОПРЕДЕЛЕНИЯ

В 3 пробирки (2 опытные пробы и холостая) вводят реактивы, как указано в таблице. Диазореакция

Для определения связанного билирубина измерение проводят спустя 5--10 мин после добавления диазосмеси, так как при длительном стоянии в реакцию вступает несвязанный билирубин. Для определения общего билирубина пробу для развития окраски оставляют стоять 20 мин, после чего измеряют на фотометре. При дальнейшем стоянии окраска не изменяется. Измерение проводят при длине волны 500--560 нм (зеленый светофильтр) в кювете с толщиной слоя в 0,5 см против воды. Из показателей, полученных при измерении общего и связанного билирубина, вычитают показатель холостой пробы. Расчет производят по калибровочному графику. Находят содержание общего и связанного билирубина.Метод Ендрассика, Клеггорна и Грофа прост, удобен в практике, не связан с применением дефицитных реактивов и является наиболее приемлемым для практических лабораторий.Определение рекомендуется приводить сразу же после забора проб, чтобы избежать окисления билирубина на свету. Гемолиз сыворотки снижает количество билирубина пропорционально присутствию гемоглобина. Следовательно, сыворотка крови не должна быть гемолизирована.

Ряд веществ -- гидрокортизон, андрогены, эритромицин, глюкокортикоиды, фенобарбитал, аскорбиновая кислота -- вызывают интерференцию.

Постоение калибровочного графика при методе ендрассика.

Способ I -- Шелонга-Вендес использованием стабилизирующего свойства белка сыворотки крови. Основной раствор билирубина: в колбе вместимостью 50 мл растворяют 40 мг билирубина в 30--35 мл 0,1 моль/л раствора карбоната натрия Na 2 CO 3 . Хорошо взбалтывают, не допуская образования пузырьков. Доводят до 50 мл 0,1 моль/л раствором Nа 2 СО 3 и несколько раз перемешивают. Раствор стоек только в течение 10 мин от начала приготовления. В дальнейшем происходит окисление билирубина. Рабочий раствор билирубина: к 13,9 мл свежей негемолизированной сыворотки здорового человека добавляют 2 мл свежеприготовленного основного раствора билирубина и 0,1 мл 4 моль/л раствора уксусной кислоты. Хорошо перемешивают. При этом выделяются пузырьки углекислого газа. Рабочий раствор стоек в течение нескольких дней. Этот раствор содержит точно на 100 мг/л, или 171 мкмоль/л, билирубина больше, чем сыворотка, взятая для приготовления раствора. Чтобы исключить при расчетах количество билирубина, содержащегося в этой сыворотке, при измерении на фотометре из величин экстинкции калибровочных проб вычитают величины экстинкции соответствующих разведений компенсационной жидкости. Для приготовления компенсационной жидкости смешивают 13,9 мл той же сыворотки, которая использовалась для приготовления калибровочного раствора билирубина, 2 мл 0,1 моль/л раствора карбоната натрия и 0,1 мл 4 моль/л раствора уксусной кислоты. Для построения калибровочного графика готовят ряд разведений с различным содержанием билирубина. К полученным разведениям прибавляют по 1,75 мл кофеинового реактива и по 0,25 мл диазосмеси. При появлении помутнения можно добавить по 3 капли 30%-ного раствора едкого натра. Измерение проводят при тех же условиях, что и в опытных пробах, через 20 мин. Из компенсационной жидкости готовят разведения, аналогичные калибровочным (как указано ниже), и далее обрабатывают их так же, как калибровочные пробы.

Таблица. Определение связанного билирубина

· Способ второй - выстраивать калибровочный график по готовому набору реактивов.(Например, набор Билирубин -эталон фирмы Лахема, включающий в себя билирубин лиофилизированный (точная концентрация билирубина приведена на этикетке флакона); и альбумин лиофилизированный.)



gastroguru © 2017