Физиология человека - Покровский В.М. Биохимия гормонов механизм действия гормонов белковой и пептидной Орган продуцент тропных гормонов

ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ (ОБЩАЯ)

ü Понятие о железах внутренней секреции (ЖВС) сформулировано И. Мюллером (1830).

ü Немецкий физиолог Адольф Бертольд (1849) установил, что пересадка кастрированному петуху в брюшную полость семенников другого петуха приводит к восстановлению исходных свойств у кастрата.

ü В 1889 Броун –Секар сообщил об опытах, проведенных на самом себе –вытяжки из семенников животных оказали на старческий организм (ученому 72 года) «омолаживающее действие», но эффект омоложения длился недолго -через 2-3 месяца он пропадал.

ü В 1901 году Соболев Л.В., доказал секрецию панкреатической железой инсулина (1921 г. Бантинг и Ч. Бест).

Эндокринология –наука, изучающая развитие, строение, функции ЖВС и клеток –продуцентов гормонов, биосинтез, механизм действия и особенности гормонов, их секрецию в норме и при патологии, а так же болезни, возникшие в результате нарушения продукции гормонов.

ЖВС - это специализированные в процессе фило- и онтогенеза органы или группы клеток, синтезирующие и выделяющие во внутреннюю среду организма биологически активные вещества (БАВ) – гормоны. ЖВС не имеют выводных протоков. Их клетки оплетены обильной сетью кровеносных и лимфатических капилляров, и их БАВ выделяются непосредственно в кровь и лимфу.

ГОРМОНЫ

Гормоны - это группа высокоспециализированных БАВ, обеспечивающих регуляцию и интеграцию функций органов и всего организма в целом.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГОРМОНОВ В ОРГАНИЗМЕ:

1. Гомеостатическая функция.

2. Влияют на процессы роста , дифференцировки тканей(т. е. на физическое, умственное и половое созревание)

3. Обеспечивают адаптацию организма.

4. Регулируют репродуктивную функцию организма (оплодотворение, беременность, лактация).

5. Регулируют и интегрируют функции организма совместно с ЦНС.

Высшей формой гуморальной регуляции является гормональная . Термин "гормон " был впервые применен в 1902 г. Старлингом и Бейлиссом в отношении открытого ими вещества, продуцирующегося в двенадцатиперстной кишке, -секретина . Термин"гормон " в переводе с греческого означает "побуждающий к действию ", хотя не все гормоны обладают стимулирующим эффектом.

Классификация вариантов действия гормонов (Балаболкин М.М., 1989):

1. Гормональное (или собственно эндокринное) - гормон выделяется из клетки –продуцента, попадает в кровь и с током крови подходит к органу –мишени, действуя на расстоянии от места продукции гормона.

2. Паракринное - из места синтеза гормон попадает во внеклеточное пространство, из него –воздействует на клетки –мишени, расположенные в округе(простагландины).

3. Аутокринное - клетки продуцируют гормон, который сам и воздействует на эту же клетку –продуцент, то есть клетка –мишень = клетка –продуцент.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ГОРМОНОВ:

1.Имеют высокую биологическую активность (мг, нг).

2.Секреция гормона - путем экзоцитоза.

3.Гормоны поступают непосредственно в кровь, лимфу или окружающую секреторную клетку интерстициальную жидкость.

4.Гормон обладает дистантностью действия.

5.Гормон обладает высокой специфичностью действия, то есть вызывает строго специфичные ответы определенных органов или тканей-мишеней. В то же время клетки других тканей не реагируют на наличие гормона.

6.Гормон не служит источником энергии для клетки.

Гормоны синтезируются и выделяются тканями, не относящимся к железам внутренней секреции:

- жировой тканью , которая выделяет женские половые гормоны;

- миокардом , выделяющим натрийуретический гормон;

- слюнными железами - эпидермальный фактор роста;

- печенью, мышцами - инсулиноподобные соматомедины.

ВИДЫ ВОЗДЕЙСТВИЙ ГОРМОНОВ НА КЛЕТКИ-МИШЕНИ:

1. Прямое воздействие: гормон непосредственно сам вызывает изменения в клетках или тканях, органах.

2. Пермиссивное воздействие: через облегчения воздействия другого гормона на данную ткань. Например, глюкокортикоиды, сами не влияя на тонус мускулатуры сосудов, создают условия, для адреналина, который увеличивает АД.

3. Сенсибилизирующее воздействие: повышение чувствительности ткани к действию гормонов.

4. Синергическое воздействие: один гормон усиливает эффект другого гормона. Например, однонаправленное действие адреналина и глюкагона. Оба гормона активируют распад гликогена в печени до глюкозы и вызывают увеличение сахара в крови.

5. Антогонистическое воздействие. Так, инсулин и адреналин оказывают на уровень глюкозы крови противоположенное влияние: инсулин вызывает гипогликемию, а глюкагон - гипергликемию.

КЛАССИФИКАЦИЯ ГОРМОНОВ

1.По месту действия:

эффекторные гормоны: действуют непосредственно на органы-мишени;

тропные гормоны: действуют на другие эндокринные железы;

гипоталамические факторы (рилизинг-факторы) : действуют на гипофиз

Ø высвобождающие (либерины)

Ø ингибирующие (статины).

2. По биологическим функциям:

Гомеостаз жидкости и электролитов: АДГ, альдостерон, ангиотензин, натрийуретический гормон;

Регуляция Са: паратиреоидный гормон, кальцитонин, витамин Д.

Гормоны – биологически активные соединения, вырабатываемые в кровь железами внутренней секреции и влияющие на обмен веществ. Известно более 50 гормонов. 10 – 10 ммоль/л – физиологическая концентрация гормонов. -6 —

Секреция гормонов стимулируется внешними и внутренними сигналами, поступающими в ЦНС. Сигналы поступают в гипоталамус, где стимулируют синтез рилизинг-гормонов: либеринов (7), статинов (3). Рилизинг-гормоны стимулируют или тормозят синтез тропных гормонов гипофиза, которые стимулируют синтез и секрецию гормонов эндокринных желёз. Изменение концентрации метаболитов в клетках-мишенях подавляет синтез гормонов, действуя на эндокринные железы либо на гипоталамус. Синтез тропных гормонов подавляется гормонами периферических желёз.

Особенности действия гормонов на органы и ткани дистантность, высокая биологическая активность 10 М, специфичность, действуют на органы – мишени, у органов-мишеней есть рецепторы (гликопротеины). -7 Рецептор для инсулина

Конечные эффекты действия гормонов изменение проницаемости клеточных мембран, изменение активности внутриклеточных ферментов, изменение интенсивности синтеза белков (через регуляцию их синтеза).

Скорость выделения гормонов меняется в течение суток (суточные ритмы). Больше гормонов выделяется зимой, меньше летом. Имеются возрастные особенности выделения гормонов. Выделение гормонов может измениться в любом возрасте, что ведёт к нарушению обмена веществ и развитию патологии. Недостаток тироксина приводит к кретинизму, избыток – к токсическому зобу. Недостаток инсулина ведёт к развитию сахарного диабета, избыток – к гиперинсулинизму.

Нарушения гормональной регуляции могут возникать в результате расстройства высшей нейрогормональной регуляции деятельности эндокринной железы (нарушение управления), из-за прямого поражения железы (инфекция, опухоль, интоксикация, травма), как проявление недостаточности субстрата (нарушается синтез гормона). как нарушение секреции, транспорта гормона, из-за изменений условий действия гормонов (электролитная среда ткани) нарушения рецепторов: — появление антител против рецепторов, -при отсутствии или дефиците рецепторов, -при нарушени регуляции рецепторов, при усиленном выведении гормонов (с мочой, желчью).

Гипосекреция гормонов зависит от генетических факторов (отсутствие фермента синтеза гормона), диетических факторов (гипотиреоз из-за недостаточности йода в диете), токсических факторов (некроз коры надпочечников под действием производных инсектицидов), иммунологических факторов (появление антител, разрушающих железу), наличия инфекции, туберкулёза, опухоли.

Гиперсекреция гормонов при гормонально активных опухолях (акромегалия при опухоли гипофиза), при аутоиммунные процессах (при тиреотоксикозе).

Период полужизни – время существования гормона в крови адреналин существует в крови секунды, стероидные гормоны – часы, тиреоидные гормоны – дни. В периферических тканях некоторые гормоны превращаются в более активные соединения.

Классификация гормонов по месту выработки, по химической природе, по влиянию на обмен веществ, по типу гуморального влияния.

Классификация гормонов по влиянию на обмен веществ По отношению к обмену белков выделяют катаболики и анаболики. По действию на углеводный обмен — гипергликемические и гипогликемические. По отношению к обмену липидов – липолитические и липогенетические.

Классификация гормонов по типу гуморального влияния Гормональное влияние. Из клетки-продуцента гормон поступает в кровь и с током крови подходит к органу-мишени, действуя дистантно. Паракринное влияние. Из клетки-продуцента гормон поступает во внеклеточное пространство и действует на клетки-мишени, которые расположены вблизи. Изокринное влияние. Из клетки-продуцента гормон поступает во внеклеточное пространство и в тесно контактирующую с ним клетку-мишень. Нейрокринное влияние. Гормон секретируется в синаптическую щель. Аутокринное влияние. Клетка-продуцент является и клеткой-мишенью.

Классификация гормонов по химической природе Белки: простые – инсулин, СТГ, сложные – ТТГ, ФСГ, Пептиды: вазопрессин, окситоцин, глюкагон, тиреокальцитонин, АКТГ, соматостатин. Производные АМК: адреналин, тироксин. Гормоны стероидной природы. Производные жирных кислот: простагландины.

Классификация гормонов по локализации рецепторов Гормоны, связывающиеся с внутриклеточными рецепторами в клетках-мишенях. К ним относятся стероидные и тиреоидные гормоны. Все они липофильны. После секреции связываются с транспортными белками, проходят сквозь плазматическую мембрану и связываются с рецептором в цитоплазме или ядре. Образуется комплекс гормон-рецептор. Он транспортируется в ядро, взаимодействует с ДНК, активируя или ингибируя гены, что приводит к индукции или репрессии синтеза белка, изменению количества белков (ферментов). Основной эффект достигается на уровне транскрипции генов.

Механизм действия липофильных гормонов Секреция гормона Связывание с транспортными белками Транспорт сквозь плазматическую мембрану Связывание с рецептором в цитоплазме или ядре Образование комплекса гормон-рецептор Транспорт комплекса в ядро Взаимодействие с ДНК Индукция синтеза белка Изменение количества белков (ферментов) Активация генов Ингибирование генов Репрессия синтеза белка

Гормоны, связывающиеся с рецепторами на поверхности клетки водорастворимые, белковой природы, Гормон действует на рецептор, а затем действие идёт через вторичных посредников: ц. АМФ, ц. ГМФ, кальций, инозитол-3 -фосфат (И-3 -Ф), диацилглицерол (ДАГ). Так действуют гормоны: СТГ, пролактин, инсулин, окситоцин, фактор роста нервов.

Циклические нуклеотиды – универсальные посредники действия различных факторов на клетки и организм. АТФ ц. АМФ + ФФн ГТФ ГМФ + ФФн гуанилатциклаза аденилатциклаза

Аденилатциклаза имеет две субъединицы: рецепторную, каталитическую. Гормон взаимодействует с рецепторной субъединицей, что переводит каталитическую в активное состояние.

Белок G встроен в мембрану и в комплексе с ионами магния и ГТФ активирует аденилатциклазу. Преобразование сигнала G -белками

Рецептор гормона, белок G , аденилатциклаза – 3 независимых белка, которые сопряжены функционально.

ц. АМФ вторичный посредник для АКТГ, ТТГ, ФСГ, ЛГ, МСГ, вазопрессина, катехоламинов, глюкагона, паратгормона, кальцитонина, секретина, тиролиберина, липотропина.

Гормоны, ингибирующие аденилатциклазу ацетилхолин, соматостатин, ангиотензин II , фосфодиэстераза катализирует превращение циклических нуклеотидов в нециклические 5 -нуклеозидмонофосфаты.

Гуанилатциклаза – гем-содержащий фермент. NO при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию ц. ГМФ, который снижает силу сердечных сокращений. ц. ГМФ действует через протеинкиназу.

Механизм действия Содержание кальция внутри клеток мало. 1. Гормон действует на рецептор G -белок Са поступает в клетку Са действует на активность ферментов, ионных насосов, каналов проницаемости.

2. Механизм действия: Са-кальмодулин Инициация Фосфорилирование протеинкиназы белков

Комплекс Са-кальмодулин изменяет активность ферментов двумя способами: 1. путём прямого взаимодействия с ферментом-мишенью, 2. через активируемую этим комплексом протеинкиназу. активирует аденилатциклазу только при низких концентрациях кальция, а при дальнейшем повышении концентрации кальция происходит ингибирование аденилатциклазы. способен активировать фосфодиэстеразу млекопитающих.

Ферменты, регулируемые Са-кальмодулином аденилатциклаза, фосфодиэстераза, гликогенсинтаза, гуанилатциклаза, пируваткиназа, пируватдегидрогеназа, пируваткарбоксилаза, фосфолипаза А 2 , миозинкиназа. Са-кальмодулин – вторичный посредник для вазопрессина и катехоламинов.

Фосфатидилинозитол-4, 5 -бисфосфат предшественник двух вторичных посредников (диацилглицерола, инозитол-3 -фосфата), находится с внутренней стороны плазматической мембраны и подвергается гидролизу в ответ на сигнал от рецептора.

Диацилглицерол и инозитол-3 -фосфат — вторичные посредники для вазопрессина, брадикинина, ангиотензина II , серотонина.

Инозитол-3 -фосфат повышает концентрацию кальция: 1. кальций высвобождается из эндоплазматического ретикулума клетки, митохондрий, 2. регулирует вход кальция через канал.

Диацилглицерол повышает сродство протеинкиназы С и кальция. Протеинкиназа С фосфорилирует многие белки. Диацилглицерол – вторичный посредник для: АКТГ, серотонина, ЛГ.

В структуре мембранных рецепторов выделяют 3 функционально разных участка 1. Обеспечивает узнавание и связывание гормона. 2. Трансмембранный. 3. Цитоплазматический участок. У инсулина это тирозинкиназа.

Простагландины – гидроксилированные продукты превращения полиненасыщенных жирных кислот. представляют собой тканевые гормоны, не являются истинными гормонами, но служат вторичными посредниками, состоят из 20 атомов углерода и включают циклопентановое кольцо. В организме человека существует 14 простагландинов.

В зависимости от структуры пятичленного кольца простагландины делят на 4 группы: А, Б, Е, Ф. Число двойных связей указывают в виде индекса: ПГА 1 Субстрат для образования простагландинов – арахидоновая кислота. Ингибиторы биосинтеза простагландинов: группа салициловой кислоты, сульфаниламиды.

Биологическая роль простагландинов способствуют сокращению матки во время родов, антиадгезивное действие, препятствуют тромбозам, провоспалительное действие, антилиполитический эффект, инсулиноподобное действие на обмен глюкозы в жировой ткани, регулируют почечный кровоток, повышают диурез, ПГЕ и ПГФ расслабляют дыхательную мускулатуру, седативное действие, усиливают сократительную способность миокарда, антисекреторный эффект, антиульцерогенное действие, медиаторы лихорадки

Применение простагландинов при астме, для лечения тромбов, для снижения артериального давления, для стимуляции родовой деятельности.

Тромбоксаны синтезируются в — тромбоцитах, — ткани мозга, — лёгких, — селезёнке, — почках. вызывают: — агрегацию тромбоцитов, — мощное сосудосуживающее действие

Простациклины синтезируются в: — эндотелии сосудов, — миокарде, — матке, — слизистой желудка.

Лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, ЖКТ, регулируют тонус сосудов, обладают сосудосуживающим действием. Основные биологические эффекты лейкотриенов связаны с воспалением, аллергией, анафилаксией, иммунными реакциями.

Гормоны белковой и пептидной структуры гормоны гипофиза, гормоны поджелудочной железы, гормоны гипоталамуса. гормоны щитовидной железы, гормоны паращитовидных желёз.

Химическая природа гормонов передней доли гипофиза СТГ – белок, ТТГ – гликопротеин, АКТГ – пептид, ГТГ: пролактин – белок, ФСГ – гликопротеин, ЛГ — гликопротеин. β-липотропин – пептид.

Соматотропный гормон анаболик: стимулирует синтез ДНК, РНК, белка, усиливает проницаемость клеточных мембран для АМК, усиливает включение АМК в белки протоплазмы, уменьшает активность внутриклеточных протеолитических ферментов, обеспечивает энергией синтетические процессы, усиливает окисление жиров, вызывает гипергликемию, которая связана с активацией, а затем с истощением инсулярного аппарата, стимулирует мобилизацию гликогена, повышает глюконеогенез. под влиянием СТГ период роста костей увеличивается, стимулируются клеточные деления, образование хрящей.

Регуляция синтеза СТГ Регуляция секреции СТГ по типу обратной связи осуществляется в вентромедиальном ядре гипоталамуса. Соматолиберин – стимулирующий регулятор секреции. Соматостатин – тормозящий регулятор, ингибирует мобилизацию кальция. Ростостимулирующее действие СТГ опосредуется ИФР-1 (инсулиноподобный фактор роста 1), который образуется в печени. ИФР-1 регулирует секрецию СТГ, подавляя высвобождение соматолиберина и стимулирует высвобождение соматостатина. Лица с дефицитом ИФР-1 лишены способности к нормальному росту.

Стимулы для секреции СТГ гипогликемия, поступление избытка белка в организм, эстрогены, тироксин. Выделению СТГ способствуют: физические нагрузки, сон (в первые 2 часа после засыпания).

Подавляют секрецию СТГ избыток углеводов и жиров в пище, кортизол. При недостатке СТГ возникает гипофизарный нанизм (карликовость).

Акромегалия возникает, если избыток СТГ наблюдается после периода полового созревания (после зарастания эпифизарных хрящей).

Тиреотропный гормон гликопротеин, молекулярная масса около 30 000, синтез и секреция ТТГ контролируются тиролиберином, связывается с рецепторами плазматических мембран и активирует аденилатциклазу, ТТГ стимулирует все стадии биосинтеза и секрецию трииодтиронина (Т 3) и тироксина (Т 4), повышает синтез белков, фосфолипидов и нуклеиновых кислот в клетках щитовидной железы.

Адренокортикотропный гормон (АКТГ) пептид, синтез и секреция АКТГ контролируются кортиколиберином, регулирует эндокринные функции надпочечников, АКТГ стимулирует синтез и секрецию кортизола.

АКТГ стимулирует: 1. захват ЛПНП, 2. гидролиз запасенных эфиров холестерина в коре надпочечников и увеличение количества свободного холестерина, 3. транспорт холестерина в митохондрии, 4. связывание холестерина с ферментами, превращающими его в прегненолон.

Лютеинизирующий гормон (ЛГ) гликопротеин, продукция ЛГ регулируется гонадолиберином, регулирует синтез и секрецию половых гормонов и гаметогенез, связывается со специфическими рецепторами плазматических мембран и стимулирует образование прогестерона клетками желтых тел и тестостерона клетками Лейдига, Роль внутриклеточного сигнала действия ЛГ играет ц. АМФ.

ФСГ гликопротеин, продукция ФСГ регулируется гонадолиберином, регулирует синтез и секрецию половых гормонов и гаметогенез, стимулирует секрецию эстрогенов в яичниках.

Пролактин белок, продукция пролактина регулируется пролактолиберином, участвует в инициации и поддержании лактации, поддерживает активность желтого тела и продукцию прогестерона, действует на рост и дифференцировку тканей.

β-липотропин пептид, действует через ц. АМФ, оказывает жиромобилизующее, кортикотропное, меланоцитостимулирующее действие, обладает гипокальциемической активностью, оказывает инсулиноподобный эффект.

Вазопрессин и окситоцин синтезируются в нейронах гипоталамуса, связываются с белками нейрофизинами и транспортируются в нейросекреторные гранулы гипоталамуса, затем вдоль аксона в заднюю долю гипофиза, где происходит пострибосомальная достройка. Гормоны задней доли гипофиза

Вазопрессин стимулятор аденилатциклазы: ц. АМФ образуется в мембране эпителия почечных канальцев, в результате повышается проницаемость для воды, повышает артериальное давление из-за стимуляции сокращения гладкой мускулатуры сосудов, способствует уменьшению диуреза из-за воздействия на канальцевый аппарат нефрона, повышения реабсорбции воды.

Несахарный диабет возникает из-за нарушения: синтеза, транспорта, секреции вазопрессина. При заболевании с мочой теряется до 40 л воды в сутки, возникает жажда. Несахарный диабет бывает при атрофии задней доли гипофиза. Синдром Пархана возникает из-за повышенной секреции вазопрессина. усиливается реабсорбция воды в почках, появляются отёки.

Окситоцин стимулирует сокращения гладкой мускулатуры матки, гладких мышц кишечника, уретры, стимулирует сокращение мышц вокруг альвеол молочных желёз, способствуя молокоотдаче. Окситоциназа разрушает гормон. При родах её активность падает в 100 раз.

Гормоны поджелудочной железы Инсулин – первый гормон, для которого расшифрована белковая природа. Его удалось получить синтетическим путём. Инсулиноподобные вещества вырабатываются в печени, почках, эндотелии сосудов головного мозга, слюнных железах, гортани, сосочках языка.

Инсулин – простой белок. Состоит из двух полипептидных цепей: а- и в-. а-цепь содержит 21 аминокислотный остаток, в-цепь – 30. Инсулин синтезируется в виде неактивного предшественника проинсулина, который путём ограниченного протеолиза превращается в инсулин. При этом от проинсулина отщепляется С-пептид из 33 аминокислотных остатков.

Основной эффект инсулина – повышение проницаемости клеточных мембран для глюкозы. Инсулин активирует: гексокиназную реакцию, синтез глюкокиназы, гликолиз, все фазы аэробного распада, пентозный цикл, синтез гликогена, синтез жира из глюкозы. Инсулин ингибирует: распад гликогена, глюконеогенез. Инсулин является анаболиком. способствует синтезу гликогена, жира, белка. оказывает белоксберегающий эффект, так как тормозит глюконеогенез из аминокислот.

Органы – мишени инсулина и характер метаболического влияния Антикатаболический эффект Анаболический эффект печень торможение гликогенолиза и глюконеогенеза активация синтеза гликогена и жирных кислот жировая ткань торможение липолиза активация синтеза глицерина и жирных кислот мышцы торможение распада белков активация синтеза белка и гликогена. Орган -мишень

Глюкагон вырабатывается а-клетками островков Лангерганса, состоит из 29 АМК, молекулярная масса 3500. Органы-мишени: печень, жировая ткань. Действует глюкагон через ц. АМФ. Рецепторами являются липопротеины мембран.

Биологическая роль глюкагона стимулирует фосфоролиз гликогена печени, стимулирует глюконеогенез, усиливает липолиз в жировой ткани и печени, увеличивает клубочковую фильтрацию, ускоряет ток крови, способствует экскреции соли, мочевой кислоты, стимулирует протеолиз, увеличивает кетогенез, стимулирует транспорт АМК в печени, снижает концентрацию калия в печени.

Соматостатин пептид, подавляет секрецию СТГ, ингибирует секрецию инсулина и глюкагона, выделен из гипоталамуса, секретируется в поджелудочной железе, желудке.

Катехоламины (адреналин, норадреналин, дофамин) гормоны мозгового слоя надпочечников, производные тирозина. Органы-мишени: печень, мышцы. Секреция гормонов возбуждается симпатическими нервами.

Механизм действия через ц. АМФ, в клетку не проникают, через изменение концентрации ионов кальция. Оба гормона вызывают гипертонию.

Различия адреналина и норадреналина Адреналин Норадреналин Свободная СН 3 группа Свободная NH 2 группа Возбуждает в-рецепторы Возбуждает а-рецепторы Расширяет бронхи Сужает бронхи Расширяет сосуды мозга, мышц Сужает сосуды мозга, мышц Стимуляция коры, возбуждает ЦНС Действует слабее Тахикардия Брадикардия Расслабляет гладкие мышцы, расширяет зрачок Действует слабее

Биохимическое действие адреналина усиливает распад гликогена в печени, вызывая гипергликемию, усиливает распад гликогена в мышцах, при этом увеличивается концентрация молочной кислоты, стимулирует фосфорилазу, ингибирует гликогенсинтазу, угнетает секрецию инсулина (сбережение глюкозы для ЦНС)

Норадреналин в 4 -8 раз слабее адреналина действует на а-адренергические рецепторы через изменение концентрации кальция (влияет на сокращения гладких мышц),

Катехоламины не проникают через гемато-энцефалический барьер (ГЭБ). Их присутствие в мозге объясняется местным синтезом. При некоторых заболеваниях ЦНС (болезни Паркинсона) наблюдается нарушение синтеза дофамина в мозге. ДОФА легко проходит через ГЭБ и служит эффективным средством для лечения болезни Паркинсона. α-метил-ДОФА конкурентно ингибирует ДОФА-карбоксилазу и используется для лечения гипертонии.

Стероидные гормоны благодаря своей липофильности не накапливаются

в эндокринных клетках, а легко проходят через мембрану и поступают в

кровь и лимфу. В связи с этим регуляция содержания этих гормонов в

крови осуществляется путем изменения скорости их синтеза.

Тиреоидные гормоны также липофильны и также легко проходят через

мембрану, однако они ковалентно связаны в эндокринной железе с тире-

оглобулином, поэтому могут выводиться из клетки только после наруше

ния этой связи. Чем больше йодированных тирозилов в составе тиреогло-

булина и чем выше скорость протеолиза йодированного белка, тем больше

тиреоидных гормонов в крови. Регуляция содержания тиреоидных гормо

нов осуществляется двумя путями - ускорением как процессов йодирова

ния, так и разрушения тиреоглобулина.

Гормоны, имеющие белковую и пептидную природу, а также катехолами

ны, гистамин, серотонин и др. - это гидрофильные вещества, которые не

могут диффундировать через клеточную мембрану. Для выведения этих

молекул созданы специальные механизмы, чаще всего пространственно и

функционально разобщенные с процессами биосинтеза.

Многие белково-пептидные гормоны образуются из предшественников

большой молекулярной массы, и выведение этих гормонов становится

возможным только после того, как произойдет отщепление «лишнего»

фрагмента. Так, выведению инсулина из клетки предшествует превраще

ние в В-клетках поджелудочной железы препроинсулина в проинсулин, а

затем в инсулин. Биосинтез инсулина и других белково-пептидных гормо

нов, а также их транспорт к периферии секреторной клетки занимает

обычно 1-3 ч. Очевидно, что воздействие на биосинтез приведет к изме

нению уровня белкового гормона в крови лишь через несколько часов.

Влияние же на выведение этих гормонов, синтезированных «впрок» и за

пасенных в специальных везикулах, позволяет повышать их концентрацию

в несколько раз за секунды или минуты.

Для секреции белково-пептидных гормонов и катехоламинов необходи

собственно деполяризация мембраны, а происходящий при ней вход Са2+

в цитоплазму клетки.

Поступив в кровь, гормоны связываются с транспортными белками,

что защищает их от разрушения и экскреции. В связанной форме гормон с

током крови переносится от места секреции к клеткам-мишеням. В этих

клетках есть рецепторы, которые имеют большее сродство к гормону, чем

белки крови.

Обычно лишь 5-10 % молекул гормона находится в крови в свободном

состоянии, и только свободные молекулы могут взаимодействовать с ре

цептором. Однако, как только они свяжутся с рецептором, равновесие в

реакции взаимодействия гормона с транспортными белками сдвигается в

сторону распада комплекса и концентрация свободных молекул гормона

останется практически неизменной. При избытке гормонсвязывающих

белков в крови концентрация свободных молекул гормона может снизить

ся до критической величины.

Связывание гормонов в крови зависит от их сродства к связывающим

белкам и концентрации этих белков. К их числу относятся транскортин,

связывающий кортикостероиды, тестостерон-эстрогенсвязывающий гло

булин, тироксинсвязывающий глобулин, тироксинсвязывающий преальбу-

мин и др. Едва ли не все гормоны могут связываться с альбумином, кон

центрация которого в крови в 1000 раз больше, чем концентрация других

гормонсвязывающих белков. Однако сродство к альбумину у гормонов в

десятки тысяч раз меньше, поэтому с альбуминами обычно связано 5-

10 % гормонов, а со специфическими белками 85-90 %. Альдостерон,

по-видимому, не имеет специфических «транспортных» белков, поэтому

находится преимущественно в связи с альбумином.

4.3.3. Молекулярные механизмы действия

гормонов

Гормоны, действующие через мембранные рецепторы и системы вто

ричных посредников, стимулируют химическую модификацию белков.

Наиболее хорошо изучено фосфорилирование. Регуляция, происходящая

за счет химических процессов (синтез и расщепление вторичного посред

ника, фосфорилирование и дефосфорилирование белка), развивается и га

сится за минуты или десятки минут.

цАМФ-зависимая

протеинкиназа

Са2*-кальмодулин-

зависимая

протеинкинаэа

Рис. 4.3. Механизм мембранной рецепции проведения гормонального сигнала в

клетке при участии вторичных посредников.

Стероидные и тиреоидные гормоны имеют цитозольные или ядерные

рецепторы, что позволяет им взаимодействовать с хроматином и влиять на

экспрессию генов. Эта регуляция, развивающаяся путем индукции или ре

прессии синтеза мРНК и белков, реализуется спустя 3-6 ч после появле

ния гормона в крови, а гасится спустя 6-12 ч.

Промежуточное положение в этой иерархии занимают факторы роста.

Их взаимодействие с рецептором приводит сначала к фосфорилированию

определенных белков, а затем к делению клеток.

Адренергические рецепторы вне зависимости от локализации (в си

напсе или вне его) относятся к семейству рецепторов, 7 раз пронизываю

щих плазматическую мембрану и сопряженных с G-белками. Известны

алфа-1А-, альфа-1В- и адьфа-1С-адренорецепторы, а-2А-, а-2В- и а-2С-адренорецеп-

торы, а также бета-1-, бета-2- и бета-3-адренорецепторы. Все а-1-рецепторы сти

мулируют фосфолипазу С, гидролизующую фосфоинозитиды. Все а-2-ре-

цепторы ингибируют аденилатциклазу, а все бета-рецепторы ее активируют.

Кроме того, а-2А-рецепторы могут активировать К+-каналы, а-2А- и

а-2В-рецепторы ингибируют Са2+-каналы, а (бета-1 -рецепторы активируют

Са2+-каналы (рис. 4.3).

В каждой клетке функционирует обычно несколько типов рецепторов к

одному и тому же гормону (например, как а-, так и р-адренорецепторы).

Кроме того, клетка чувствительна обычно к нескольким эндокринным

регуляторам - нейромедиаторам, гормонам, простагландинам, факторам

роста и др. Каждый из этих регуляторов имеет характерную только для

Аденилатциклаза

Эндоплазматическая

Физиологический

Физиологический

Рис. 4.4. Механизм

цитоплазматического

(ядерного) действия

стероидных гормонов.

Ra и Rb - две субъеди

ницы рецепторов; Н -

него продолжительность и амплитуду регуляторного сигнала, для каждого

характерно определенное соотношение активностей систем генерации вто

ричных посредников в клетке или изменения мембранного потенциала.

На уровне исполнительных систем клетки может происходить как усиле

ние, так и взаимное гашение разных регуляторных сигналов.

На определенных стадиях онтогенеза или при достижении критическо

го для организма отклонения от нормы того или иного фактора гомеостаза

(гипотермия, гипогликемия, гипоксемия, потеря крови и др.) включается

медленная, но наиболее мощная система эндокринной регуляции, дейст

вующая через стероидные (андрогены, эстрогены, прогестины, глюкокор-

тикоиды и минералокортикоиды) и тиреоидные (тироксин и трийодтиро-

нин) гормоны. Молекулы этих регуляторов, имея липофильную природу,

легко проникают через липидный бислой и связываются со своими рецеп

торами в цитоплазме или ядре (рис. 4.4.). Затем гормонрецепторный ком

плекс связывается с ДНК и белками хроматина, что стимулирует синтез

матричной РНК на определенных генах. Трансляция мРНК приводит к

появлению в клетке новых белков, которые вызывают физиологический

эффект этих гормонов.

Стероидные и тиреоидные гормоны могут также репрессировать неко

торые гены, что реализуется в биологический эффект путем уменьшения

количества определенных белков в клетке. Обычно эти гормоны изменяют

крипции функционирующих генов, а за счет включения-выключения но

вых генов. Так, например, стимулирование глюкокортикоидами амино-

трансферазной активности печени происходит благодаря появлению в

клетках новых изоформ аминотрансфераз.

К числу белков, экспрессия которых в клетке контролируется гормона

ми, относятся не только ферменты, участвующие в метаболизме, но и

многие рецепторы, а также регуляторные белки и ферменты, участвующие

в обмене вторичных посредников. Благодаря этому стероидные и тиреоид

ные гормоны могут участвовать в формировании не только возрастных и

половых признаков, но и определять психоэмоциональный статус орга

низма, а также баланс катаболических и анаболических реакций в органах

и тканях, их чувствительность к нейромедиаторам и гормонам.


Похожая информация.


Исследователи выделяют различные продукты, полезные для простаты. При этом нужно понимать, что правильное питание не излечивает простатит. Потребление определенных продуктов уменьшает риски развития заболеваний предстательной железы и ускоряет восстановление мужчины при подобных патологиях.

1. Бразильский орех

В состав семян данного растения входит цинк, который также необходим для нормального функционирования простаты. Кроме того, продукт содержит в себе различные виды аминокислот, магний, тиамин. А благодаря повышенному содержанию насыщенных жиров, достигающего 25%, для нормализации и поддержания работы предстательной железы достаточно каждую неделю съедать около 30 г бразильского ореха.

2. Брокколи

Брокколи - это естественный источник таких микроэлементов, как индолы и сульфорафан фитонутриен, которые предотвращают развитие опухолевых процессов в организме. Последний стимулирует активность ферментов, обеспечивающих выведение токсинов. Благодаря сульфорафан фитонутриену уменьшается концентрация канцерогенов в организме. А индол тормозит синтез специфического антигена простаты, уровень которого повышается на фоне течения ракового новообразования.

Согласно результатам нескольких исследований, еженедельное потребление брокколи снижает на 45% вероятность развития злокачественной опухоли в предстательной железе 3 и 4 степени.

Эта капуста плохо переносит температурное воздействие. Поэтому, чтобы брокколи сохранили полезные свойства, продукт рекомендуют отваривать или обжаривать не более 5 минут. Перед приготовлением капусту следует разрезать на несколько частей. В таком виде брокколи должны пролежать не менее 5 минут, за которые на поверхности сформируются растительные элементы, сохраняющие полезные свойства продукта.

3. Перец чили

К числу полезных свойств этого продукта относят способность предотвратить развитие атеросклероза за счет подавления свободных радикалов. А данное заболевание относят к одной из причин появления простатита.

4. Зеленый чай

Зеленый чай является источником катехинов, или природных антиоксидантов, которые подавляют некоторые бактериальные и вирусные инфекции, укрепляют иммунитет. Также указанные вещества оказывают активное сопротивление развитию раковых опухолей, включая новообразования, прорастающие в простате.

Результаты исследования показали, что регулярное потребление зеленого чая снижает концентрацию простатитического специфического антигена и двух биомаркеров (факторов роста тканей сосудов и гепатоцитов) злокачественных процессов в предстательной железе.

5. Азиатские грибы

Регулярно потребляя азиатские грибы (шиитаке), можно снизить вероятность развития раковых опухолей в организме. За данный эффект отвечает лентинан, который содержится в этом продукте.

В состав шиитаке также входит мощный антиоксидант L-ergothioneine. Аминокислота уничтожает свободные радикалы, препятствуя развитию патологий предстательной железы. Помимо шиитаке L-ergothioneine встречается в устрицах, грибах маитаке, вешенках и некоторых других продуктах.

6. Гранат

Гранат содержит в достаточно большом количестве фитовещества и антиоксиданты, необходимые для поддержания здоровья предстательной железы. Экстракт, полученный из этого плода, предупреждает развитие раковых опухолей в простате, способствуя самоуничтожению злокачественных клеток. Кроме того, гранат за счет активности эллаготанинов приостанавливает рост кровеносных сосудов, которые питают новообразования.

7. Семена тыквы

Активному развитию доброкачественной гиперплазии способствуют тестостерон и дигидротестостерон. Притормозить синтез обоих гормонов помогает масло, содержащееся в тыквенных семенах. Этот эффект обеспечивают жирные кислоты Омега-3 и каротиноиды.

Кроме того, семена тыквы содержат цинк, необходимый для нормального функционирования предстательной железы.

8. Лосось

Лосось - это источник жирных кислот Омега-3, рекомендованных для поддержания здоровья предстательной железы. Некоторые виды рыбы содержат указанные микроэлементы в большем количестве, другие - в меньшем. Однако лосось вне зависимости от его принадлежности к определенному роду должен периодически появляется на столе у возрастных мужчин.

Потребление рыбы способствует снижению риска развития рака простаты. Жирные кислоты приостанавливают разрастание злокачественных опухолей на любой стадии. Более того, потребляя раз в неделю лосось, можно значительно снизить риск появления рака даже у тех мужчин, которые имеют генетическую предрасположенность.

9. Помидоры

Помидоры содержат ликопин, отличающийся мощными антиоксидантными свойствами. Вещество оказывает комплексное воздействие на организм, в том числе и на предстательную железу.

Для профилактики заболеваний простаты следует потреблять помидоры, прошедшие предварительную обработку. Такое воздействие снижает прочность кожуры, благодаря чему ликопин быстрее проникает в организм человека. Поэтому для профилактики простатита и других заболеваний предстательной железы следует потреблять томатную пасту, соусы, супы, сок.

Согласно исследованиям, помидоры в течение 10 недель помогают снизить на 10% уровень простатического специфического антигена у мужчин с доброкачественной гиперплазией и на 35% — рака простаты.

10. Куркума

Куркума содержит куркумин, который придает специи острый привкус. Это вещество эффективно в борьбе с воспалительными процессами и простудными патологиями. Но, как показали некоторые исследования, куркумин обладает противоопухолевым эффектом.

Куркуму рекомендуют сочетать с брокколи или другими крестоцветными овощами. Оба продукта оказывают мощное противоопухолевое воздействие на организм, тем самым снижая риск развития злокачественного новообразования в предстательной железе.

Несмотря на то что специя обладает такими полезными свойствами, в большом количестве она вредит организму. Поэтому добавлять куркуму в блюда рекомендуется в меру.

Повышенные гормоны щитовидной железы - симптомы, специфичные для этого состояния

Щитовидная железа отвечает за обмен веществ, регулирует работу половой, нервной и кровеносной систем. Часто встречается такая проблема, как повышенные гормоны щитовидной железы - симптомы гиперфункции достаточно специфичны, формируют клиническую картину заболевания.

Гормональный дисбаланс приводит к различным нарушениям метаболизма и ухудшению самочувствия.

Тиреоидные гормоны

Щитовидная железа секретирует:

  1. Тироксин (Т4) — выделяется фолликулярными клетками. Отвечает за энергетический и пластический метаболизм. Содержит 4 молекулы йода.
  2. Трийодтиронин (Т3) — обладает большей активностью. В тканях и органах Т4 превращается в Т3, теряя одну молекулу йода.
  3. Кальцитонин — секретируется C-клетками железистой ткани. Влияет на минеральный обмен. Функции этого гормона еще не изучены полностью.

Передняя доля гипофиза вырабатывает тиреотропный гормон (ТТГ). Воздействуя на рецепторы, расположенные на поверхности клеток эпителия щитовидной железы, ТТГ действует на выработку тиреоидных гормонов.

Длительное воздействие повышенных концентраций тиреотропного гормона активирует пролиферацию железистой ткани, приводя к увеличению щитовидки. Это происходит при сбое гипоталамо-гипофизарной системы.

При гиперфункции щитовидной железы концентрация ТТГ в крови уменьшается и увеличивается в случае гипофункции (правило работает, если нет проблем с гипофизом).

Нормальные показатели работы щитовидной железы

Внимание! Лучшее время для сдачи анализов - с 8 до 10 часов утра, натощак. За три дня исключить физические нагрузки, алкоголь, прием лекарственных препаратов. Цена обследования достаточно высока. Не усложняйте себе жизнь повторными анализами!

Для взрослых мужчин и женщин:

У женщин в период беременности часто отмечается снижение ТТГ. Не нужно пугаться, это соответствует норме.

В чем причина гипертиреоза?

Нередко недостаток и избыток гормонов щитовидной железы - симптомы различных недугов.

К гиперфункции приводят:

  1. Диффузный токсический зоб - аутоиммунное заболевание, которое проявляется аномальным разрастанием железистой ткани. Причина патологического процесса - выработка антител, разрушающих рецепторы ТТГ гипофиза, что приводит к постоянной стимуляции щитовидки.
  2. При тиреоидите и болезни Хашимото происходит выброс гормонов щитовидной железы: симптомы гипертиреоза развиваются очень быстро. Это явление носит временный характер. Тиреоидит часто бывает осложнением вирусной инфекции. Разрушение фолликулярных клеток щитовидной железы ведет к повышению уровня тиреоидных гормонов в крови.
  3. Узловой зоб (при разрастании в уплотнениях функциональной ткани).
  4. Бесконтрольное применение эутирокса или аналогичных препаратов.
  5. Опухоли гипофиза, секретирующие ТТГ.
  6. Токсическая аденома щитовидной железы.
  7. Некоторые опухоли яичников также способны продуцировать тиреоидные гормоны.

Клинические проявления

Если повышены гормоны щитовидной железы — симптомы развиваются постепенно. Изменения в самочувствии приписываются усталости и стрессам. Для того, чтобы сохранить здоровье, необходимо быть внимательным.

Первые симптомы

Для начала заболевания характерно:

  • раздражительность;
  • бессонница;
  • постоянная готовность к слезам;
  • изменение аппетита;
  • похудание при нормальной диете;
  • повышенная возбудимость.;
  • агрессивность;
  • неспособность сосредоточиться на выполнении задачи.

Успокоительные средства оказывают лишь кратковременный эффект. Отдых и смена обстановки тоже не помогают. Организм сигнализирует: пора сдать анализы!

Тиреотоксикоз

При длительном воздействии высоких концентраций гормонов развиваются метаболические расстройства. Неправильный обмен веществ приводит к нарушениям со стороны нервной, сердечно-сосудистой и половой систем.

Эти изменения отражаются на внешнем виде больного. Никого не удивляет, если при определенных клинических признаках гормон Т4 свободный повышен: симптомы тиреотоксикоза достаточно специфичны.

Клиническая картина:

Нервно-психическая сфера
  • Мелкоразмашистый тремор.
  • Невроз.
  • Быстрая речь.
  • Чувство страха.
Сердечно-сосудистая система Частые проблемы:
  • Тахикардия, плохо поддающаяся лечению.
  • Аритмии (мерцание и трепетание предсердий).
  • Высокое пульсовое давление (повышение систолического давления на фоне сниженного диастолического).
  • В дальнейшем возможно развитие сердечной недостаточности.
Офтальмологические симптомы Обратимые нарушения:
  • Расширение глазной щели.
  • Редкое мигание.
  • Экзофтальм (выдвигание вперед глазного яблока).
  • Необычный блеск глаз.
  • Дрожание век при закрытии глаз.
  • Из-за поражения глазодвигательных мышц может возникать косоглазие.

Осложнения:

  • Отечная форма экзофтальма.
  • Фиброз орбиты.
  • Несмыкание глазной щели.
  • Изъязвление слизистой глаз и роговицы
  • Отек орбиты приводит к сдавливанию зрительного нерва и кровеносных сосудов.
  • Нарушение венозного оттока повышает внутриглазное давление.
  • Расстройства зрения (двоение).
Гормональный сбой щитовидной железы: симптомы нарушения основного обмена Характерно:
  • Исхудание.
  • Повышение температуры тела без видимой причины.
  • Непереносимость тепла.
  • Усиленное потоотделение.
  • Вторичная надпочечниковая недостаточность (следствие разрушения кортизола тиреоидными гормонами).
Половая система Возникает:
  • Бесплодие из-за подавления секреции гонадотропинов.
  • Нерегулярные и скудные месячные.
  • У мужчин нередко развивается импотенция.
Расстройства водного обмена Нередко:

Фото и видео в этой статье расскажут, как клинически проявляется повышение гормонов щитовидной железы.

Методы лечения

Для терапии тиреотоксикоза применяются следующие мероприятия:

  1. Хирургическое лечение. Применяется при диффузном токсическом зобе больших размеров, подозрении на злокачественный процесс или при отсутствии результата от консервативной терапии.
  2. Медикаментозная терапия включает назначение антитиреоидных средств и йодидов. Часто применяются такие препараты, как мерказолил, пропилтиоурацил и йодид калия.
  3. Лечение радиоактивным йодом, который, накапливаясь в клетках железистой ткани приводит к их разрушению. Часто этот метод лечения приводит к снижению функции эндокринного органа.

Не пропустите низкий уровень гормонов щитовидной железы — симптомы гипотиреоза должны заставить вас насторожиться!

Тиреотоксический криз

Иногда при тяжелых формах заболевания лечение оказывается неэффективным. В крови резко повышается содержание Т3 и Т4. Это состояние угрожает жизни больного.

Иногда встречается у новорожденных, если мать во время беременности не получала лечение по поводу тиреотоксикоза.

Провоцируют криз

Привести к возникновению патологического состояния могут:

  • стрессы:
  • физическое перенапряжение;
  • инфекции;
  • травмы;
  • оперативное лечение болезней щитовидной железы;
  • беременность и роды;
  • сопутствующие заболевания.

Часто тиреотоксическая кома возникает после использования радиоактивного йода, если оно проводилось без учета гормонального статуса.

Внимание! Оперативное лечение диффузного токсического зоба или терапия с применением радиоактивного йода - только после стабилизации гормонального статуса! В противном случае существует риск, что вы своими руками создадите опасную для жизни ситуацию.

Основные симптомы

Ухудшение состояния быстро прогрессирует.

На криз указывают следующие клинические проявления:

  1. Вначале отмечается повышенная возбудимость, тремор конечностей, бред. Затем больной становится заторможенным. В дальнейшем - потеря сознания, кома.
  2. Высокая тахикардия. Частота сердечных сокращений достигает 200 в минуту.
  3. Мерцательная аритмия.
  4. Увеличение артериального давления.
  5. Одышка.
  6. Лихорадка.
  7. Тошнота, боли в животе.
  8. Иногда развивается желтуха.

При отсутствии лечения тиреотоксический криз приводит к летальному исходу. Для того, чтобы установить диагноз, проводится обследование.

Диагностические мероприятия

Поможет распознать проблему:

  1. Гормональное исследование. Определяется повышение Т4 и Т3, снижение ТТГ и кортизола.
  2. Повышение сахара в крови.
  3. Ультразвуковое обследование выявит увеличение железы и усиление кровотока.
  4. Снижение холестерина.

Лечение

Своевременная и правильная терапия поможет стабилизировать состояние больного и предотвратить летальный исход. При появлении признаков тиреотоксического криза больной срочно госпитализируется в стационар.

Инструкция по оказанию неотложной помощи:

  1. Снижение выработки тиреоидных гормонов: внутривенное введение йодита натрия.
  2. Подавление активности щитовидки (мерказолил).
  3. Инфузия с преднизолоном или гидрокортизоном.
  4. При сильном возбуждении применяется дроперидол.
  5. Борьба с нарушениями ритма.

Хороший результат дает плазмаферез: обеспечивает быстрое выведение гормонов, уменьшает токсическое действие.

Кальцитонин

Этот гормон вырабатывают парафолликулярные клетки щитовидной железы. Его значение недостаточно изучено. Кальцитонин влияет на обмен кальция и фосфора: повышает отложение кальция в костях и уменьшает его концентрацию в крови. Нехватка гормона щитовидной железы - симптомы нарушения минерального обмена (может привести к остеопорозу).

Обычно кальцитонин вырабатывается в небольших количествах. Увеличение его уровня в крови говорит о развитии медуллярного рака щитовидной железы. Определение этого гормона помогает диагностировать опасное заболевание на ранних стадиях, что увеличивает шансы на выздоровление.

Частые вопросы врачу

Антитела к тиреоидной пероксидазе

Добрый день! Лежу в эндокринологии на обследовании. Сегодня случайно прочитал в своей истории болезни такую фразу: «Гормон АТПО повышен - симптомы АИТ.» Что это значит? Что-то страшное? В последнее время сильно похудел. Я чувствую, у меня рак и врачи это скрывают. Помогите!

Здравствуйте! Думаю, для паники нет оснований. Анализ на АТПО (антитела к тиреоидной пероксидазе) показывает наличие аутоиммунного заболевания. Вам следует обратиться за разъяснениями к лечащему врачу, а не делать поспешные выводы на основании выхваченной из истории болезни фразы.

Где можно прочитать о гипотиреозе?

Здравствуйте! Я учусь в медучилище. Надо написать реферат: «Недостаток гормонов щитовидной железы: симптомы + лечение». Какую литературу вы посоветуете?

  • «Краткий справочник заболеваний щитовидной железы» Авторы: Федак И.Р., Фадеев В.В., Мельниченко Г.А..
  • Фадеев В.В. «Дневник пациента с гипотиреозом».

Прием антитиреоидных средств во время беременности

Добрый день, доктор! Я страдаю тиреотоксикозом, все время принимала мерказолил. Недавно выяснила, что жду ребенка. Эндокринолог говорит, прием препарата продолжать нельзя. Так ли это?

Здравствуйте! Прием мерказолила после первого триместра может вызвать у новорожденного недостаток гормона щитовидной железы - симптомы гипотиреоза. Думаю, эндокринолог предложит вам другой препарат.

115. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция.

По расстоянию от клетки-продуцента гормона до клетки-мишени различают эндокринный, паракринный и аутокринный варианты регуляции.
Эндокринная , или дистантная, регуляция. Секреция гормона происходит в жидкие среды организма. Клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко. Пример: секреторные клетки эндокринных желёз, гормоны из которых поступают в систему общего кровотока.
Паракринная регуляция . Продуцент биологически активного вещества и клетка-мишень расположены рядом. Молекулы гормона достигают мишени путём диффузии в межклеточном веществе. Например, в париетальных клетках желёз желудка секрецию Н + стимулируют гастрин и гистамин, а подавляют соматостатин и Пг, секретируемые рядом расположенными клетками.
Аутокринная регуляция . При аутокринной регуляции клетка-продуцент гормона имеет рецепторы к этому же гормону (другими словами, клетка-продуцент гормона в то же время является его мишенью). Примеры: эндотелины, вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки; Т-лимфоциты, секретирующие интерлейкины, имеющие мишенями разные клетки, в том числе и Т-лимфоциты.

116. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов

Роль гормонов в регуляции обмена веществ и функций . Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона. В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью. Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ,release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз. Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови. В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

  • синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;
  • действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);
  • обладают плейотропной (полифункциональной) активностью.

Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например изменение скорости синтеза ферментов и других белков или изменение их активности. Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию. Например, щитовидная железа - специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Глюкагон, воздействуя на адипоциты, активирует липолиз, в печени стимулирует мобилизацию гликогена и глюконеогенез. Характерный признак клетки-мишени - способность воспринимать информацию, закодированную в химической структуре гормона.

Рецепторы гормонов . Начальный этап в действии гормона на клетку-мишень - взаимодействие гормона с рецептором клетки. Концентрация гормонов во внеклеточной жидкости очень низка и обычно колеблется в пределах 10 -6 -10 -11 ммоль/л. Клетки-мишени отличают соответствующий гормон от множества других молекул и гормонов благодаря наличию на клетке-мишени соответствующего рецептора со специфическим центром связывания с гормоном.

Общая характеристика рецепторов

Рецепторы пептидных гормонов и адреналина располагаются на поверхности клеточной мембраны. Рецепторы стероидных и тиреоидных гормонов находятся внутри клетки. Причём внутриклеточные рецепторы для одних гормонов, например глюкокортикоидов, локализованы в цитозоле, для других, таких как андрогены, эстрогены, тиреоидные гормоны, расположены в ядре клетки. Рецепторы по своей химической природе являются белками и, как правило, состоят из нескольких доменов. В структуре мембранных рецепторов можно выделить 3 функционально разных участка. Первый домен (домен узнавания) расположен в N-концевой части полипептидной цепи на внешней стороне клеточной мембраны; он содержит гликозилированные участки и обеспечивает узнавание и связывание гормона. Второй домен - трансмембранный. У рецепторов одного типа, сопряжённых с G-белками, он состоит из 7 плотно упакованных α-спиральных полипептидных последовательностей. У рецепторов другого типа трансмембранный домен включает только одну α-спирадизованную полипептидную цепь (например, обе β-субъединицы гетеротетрамерного рецептора инсулина α 2 β 2). Третий (цитоплазматический) домен создаёт химический сигнал в клетке, который сопрягает узнавание и связывание гормона с определённым внутриклеточным ответом. Цитоплазматический участок рецептора таких гормонов, как инсулин, фактор роста эпидермиса и инсулиноподобный фактор роста-1 на внутренней стороне мембраны обладает тирозинки-назной активностью, а цитоплазматические участки рецепторов гормона роста, пролактина и цитокинов сами не проявляют тирозинкиназ-ную активность, а ассоциируются с другими цитоплазматическими протеинкиназами, которые их фосфорилируют и активируют.

Рецепторы стероидных и тиреоидных гормонов содержат 3 функциональные области. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. Центральная часть рецептора включает домен связывания ДНК. На N-концевом участке полипептидной цепи располагается домен, называемый вариабельной областью рецептора, отвечающий за связывание с другими белками, вместе с которыми участвует в регуляции транскрипции.

117. Механизмы передачи гормональных сигналов в клетки.

По механизму действия гормоны можно разделить на 2 группы. К первой группе относят гормоны, взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, а также гормоны местного действия - цитокины, эйкозаноиды). Вторая группа включает гормоны, взаимодействующие с внутриклеточными рецепторами.Связывание гормона (первичного посредника) с рецептором приводит к изменению кон-формации рецептора. Это изменение улавливается другими макромолекулами, т.е. связывание гормона с рецептором приводит к сопряжению одних молекул с другими (трансдукция сигнала). Таким образом, генерируется сигнал, который регулирует клеточный ответ путём изменения активности или количества ферментов и других белков. В зависимости от способа передачи гормонального сигнала в клетках меняется скорость реакций метаболизма:

  • в результате изменения активности ферментов;
  • в результате изменения количества ферментов

118. Классификация гормонов по химическому строению и биологическим функциям

Классификация гормонов по химическому строению

Пептидные гормоны Стероиды Производные аминокислот
Адренокортикотропный гормон (кортикотропин, АКТГ) Альдостерон Адреналин
Гормон роста (соматотропин, ГР, СТГ) Кортизол Норадреналин
Тиреотропный гормон (тиреотропин, ТТГ) Кальцитриол Трийодтиронин (Т 3)
Лактогенный гормон (пролактин, ЛТГ) Тестостерон Тироксин (Т 4)
Лютеинизирующий гормон (лютропин, ЛГ) Эстрадиол
Фолликулостимулирующий гормон (ФСГ) Прогестерон
Меланоцитстимулирующий гормон (МСГ)
Хорионический гонадотропин (ХГ)
Антидиуретический гормон (вазопрессин, АДГ)
Окситоцин
Паратиреоидный гормон (паратгормон, ПТГ)
Кальцитонин
Инсулин
Глюкагон

Классификация гормонов по биологическим функциям*

Регулируемые процессы Гормоны
Обмен углеводов, липйдов, аминокислот Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин
Водно-солевой обмен Альдостерон, антидиуретический гормон
Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол
Репродуктивная функция Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны
Синтез и секреция гормонов эндокринных желёз Тропные гормоны гипофиза, либерины и статины гипоталамуса
Изменение метаболизма в клетках, синтезирующих гормон Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

(*) Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции

119. Строение, синтез и метаболизм иодтиронинов. Влияние на обмен ве­ществ. Изменение метаболизма при гипо- и гипертиреозе. Причины и проявление эндемического зоба.

Биосинтез йодтиронинов . Йодтиронины синтезируются в составе белка тиреоглобулина (Тг) в фолликулах, которые представляют собой морфологическую и функциональную единицу щитовидной железы.

Тиреоглобулин - гликопротеин с молекулярной массой 660 кД, содержащий 115 остатков тирозина. 8-10% массы тиреоглобулина представлено углеводами. Содержание йодида в организме составляет 0,2-1%

.

Тиреоглобулин синтезируется на рибосомах шероховатого ЭР в виде претиреоглобулина, затем переносится в цистерны ЭР, где происходит формирование вторичной и третичной структуры, включая процессы гликозилирования. Из цистерн ЭР Тиреоглобулин поступает в аппарат Гольджи, включается в состав секреторных гранул и секретируется во внеклеточный коллоид, где происходит йодирование остатков тирозина и образование йодтиронинов. Йодирование тиреоглобулина и образование йодтиронинов осуществляется в несколько этапов

Транспорт йода в клетки щитовидной железы . Йод в виде органических и неорганических соединений поступает в ЖКТ с пищей и питьевой водой. Суточная потребность в йоде составляет 150-200 мкг. 25-30% этого количества йодидов захватывается щитовидной железой. Транспорт йодида в клетки щитовидной железы - энергозависимый процесс и происходит при участии специального транспортного белка против электрохимического градиента (соотношение концентраций I - в железе к концентрации I - в сыворотке крови в норме составляет 25:1). Работа этого йодид-переносящего белка сопряжена с Nа + ,К + -АТФ-азой.

Окисление йода. Окисление I - в I + происходит при участии гемсодержащей тиреоперокси-дазы и Н 2 О 2 в качестве окислителя. Йодирование тирозина . Окисленный йод взаимодействует с остатками тирозина в молекуле тиреоглобулина. Эта реакция также катализируется тиреопероксидазой.

Образование йодтиронинов. Под действием тиреопероксидазы окисленный йод реагирует с остатками тирозина с образованием монойод-тирозинов (МИТ) и дийодтирозинов (ДИТ). Две молекулы ДИТ конденсируются с образованием йодтиронина Т 4 , а МИТ и ДИТ - с образованием йодтиронина Т 3 . Йодтиреоглобулин транспортируется из коллоида в фолликулярную клетку путём эндоцитоза и гидролизуется ферментами лизосом с освобождением Т 3 и Т 4 . В нормальных условиях щитовидная железа сек-ретирует 80-100 мкг Т 4 и 5 мкг Т 3 в сутки. Ещё 22-25 мкг Т 3 образуется в результате дейодирования Т 4 в периферических тканях по 5"-углеродному атому.

Транспорт и метаболизм йодтиронинов . От половины до двух третей Т 3 и Т 4 находятся в организме вне щитовидной железы. Большая часть их циркулирует в крови в связанной форме в комплексе с белками: тироксинсвязывающим глобулином (ТСГ) и тироксинсвязывающим преальбумином (ТСПА). ТСГ служит основным транспортным белком йодтиронинов, а также формой их депонирования. Он обладает более высоким сродством к Т 3 и Т 4 и в нормальных условиях связывает почти всё количество этих гормонов. Только 0,03% Т 4 и 0,3% Т 3 находятся в крови в свободной форме. Т 1/2 Т 4 в плазме в 4-5 раз больше, чем Т 3 . Для Т 4 этот период составляет около 7 дней, а для Т 3 - 1-1,5 дня. Биологическая активность йодтиронинов обусловлена несвязанной фракцией. Т 3 - основная биологически активная форма йодтиронинов; его сродство к рецептору клеток-мишеней в 10 раз выше, чем у Т 4 . В периферических тканях в результате дейодирования части Т 4 по пятому углеродному атому образуется так называемая "реверсивная" форма Т 3 , которая почти полностью лишена биологической активности. Другие пути метаболизма йодтиронинов включают полное дейодирование, дезаминирование или декарбоксилирование. Йодированные продукты катаболизма йодтиронинов конъюгируют-ся в печени с глюкуроновой или серной кислотами, секретируются с жёлчью, в кишечнике вновь всасываются, дейодируются в почках и выделяются с мочой.

Механизм действия и биологические функции йодтиронинов. Клетки-мишени йодтиронинов имеют 2 типа рецепторов к этим гормонам. Основные эффекты йодтиронинов - результат их взаимодействия с высокоспецифичными рецепторами, которые в комплексе с гормонами постоянно находятся в ядре и взаимодействуют с определёнными последовательностями ДНК, участвуя в регуляции экспрессии генов. Другие рецепторы расположены в плазматической мембране клеток, но это не те же самые белки, что в ядре. Они обладают более низким сродством к йодтиронинам и, вероятно, обеспечивают связывание гормонов для удержания их в непосредственной близости к клетке. При физиологической концентрации йодтиронинов их действие проявляется в ускорении белкового синтеза, стимуляции процессов роста и клеточной дифференцировки. В этом отношении йодтиронины - синергисты гормона роста. Кроме того, Т 3 ускоряет транскрипцию гена гормона роста. У животных при дефиците Т 3 клетки гипофиза теряют способность к синтезу гормона роста. Очень высокие концентрации Т 3 тормозят синтез белков и стимулируют катаболические процессы, показателем чего служит отрицательный азотистый баланс. Метаболические эффекты йодтиронинов относят в основном к энергетическому метаболизму, что проявляется в повышении поглощения клетками кислорода. Этот эффект проявляется во всех органах, кроме мозга, РЭС и гонад. В разных клетках Т 3 стимулирует работу Nа + ,К + -АТФ-азы, на что затрачивается значительная часть энергии, утилизируемой клеткой. В печени йодтиронины ускоряют гликолиз, синтез холестерола и синтез жёлчных кислот. В печени и жировой ткани Т 3 повышает чувствительность клеток к действию адреналина и косвенно стимулирует липолиз в жировой ткани и мобилизацию гликогена в печени. В физиологических концентрациях Т 3 увеличивает в мышцах потребление глюкозы, стимулирует синтез белков и увеличение мышечной массы, повышает чувствительность мышечных клеток к действию адреналина. Йодтиронины также участвуют в формировании ответной реакции на охлаждение увеличением теплопродукции, повышая чувствительность симпатической нервной системы к норадреналину и стимулируя секрецию норадреналина.

Заболевания щитовидной железы Гормоны щитовидной железы необходимы для нормального развития человека.

Гипотиреоз у новорождённых приводит к развитию кретинизма, который проявляется множественными врождёнными нарушениями и тяжёлой необратимой задержкой умственного развития. Гипотиреоз развивается вследствие недостаточности йодтиронинов. Обычно гипотиреоз связан с недостаточностью функции щитовидной железы, но может возникать и при заболеваниях гипофиза и гипоталамуса.

Наиболее тяжёлые формы гипотиреоза, сопровождающиеся слизистым отёком кожи и подкожной клетчатки, обозначают термином "микседема " (от греч. туха - слизь, oedema - отёк). Отёчность обусловлена избыточным накоплением гликозаминогликанов и воды. В подкожной клетчатке накапливается глюкуроновая и в меньшей степени хондроитинсерная кислоты. Избыток гликозаминогликанов вызывает изменения коллоидной структуры межклеточного матрикса, усиливает его гидрофильность и связывает ионы натрия, что приводит к задержке воды. Характерные проявления заболевания: снижение частоты сердечных сокращений, вялость, сонливость, непереносимость холода, сухость кожи. Эти симптомы развиваются вследствие снижения основного обмена, скорости гликолиза, мобилизации гликогена и жиров, потребления глюкозы мышцами, уменьшения мышечной массы и снижения теплопродукции. При возникновении гипотиреоза у детей старшего возраста наблюдают отставание в росте без задержки умственного развития. В настоящее время у взрослых людей частой причиной гипотиреоза является хронический аутоиммунный тиреоидит, приводящий к нарушению синтеза йодтиронинов (зоб Хашимото ).

Гипотиреоз может быть также результатом недостаточного поступления йода в организм -эндемический зоб . Эндемический зоб (нетоксический зоб) часто встречается у людей, живущих в районах, где содержание йода в воде и почве недостаточно. Если поступление йода в организм снижается (ниже 100 мкг/сут), то уменьшается продукция йодтиронинов, что приводит к усилению секреции ТТГ (из-за ослабления действия йодтиронинов на гипофиз по механизму отрицательной обратной связи), под влиянием которого происходит компенсаторное увеличение размеров щитовидной железы (гиперплазия), но продукция йодтиронинов при этом не увеличивается.

Гипертиреоз возникает вследствие повышенной продукции йодтиронинов. Диффузный токсический зоб (базедова болезнь, болезнь Грейвса) - наиболее распространённое заболевание щитовидной железы. При этом заболевании отмечают увеличение размеров щитовидной железы (зоб), повышение концентрации йодтиронинов в 2-5 раз и развитие тиреотоксикоза. Характерные признаки тиреотоксикоза: увеличение основного обмена, учащение сердцебиений, мышечная слабость, снижение массы тела (несмотря на повышенный аппетит) , потливость, повышение температуры тела, тремор и экзофтальм (пучеглазие). Эти симптомы отражают одновременную стимуляцию йодтиронинами как анаболических (рост и дифференцировка тканей), так и катаболических (катаболизм углеводов, ли-пидов и белков) процессов. В большей мере усиливаются процессы катаболизма, о чём свидетельствует отрицательный азотистый баланс. Гипертиреоз может возникать в результате различных причин: развитие опухоли, тиреоидит, избыточное поступление йода и йодсодер-жащих препаратов, аутоиммунные реакции. Болезнь Грейвса возникает в результате образования антител к тиреоидным антигенам. Один из них, иммуноглобулин (IgG), имитирует действие тиреотропина, взаимодействуя с рецепторами тиреотропина на мембране клеток щитовидной железы. Это приводит к диффузному разрастанию щитовидной железы и избыточной неконтролируемой продукции Т 3 и Т 4 , поскольку образование IgG не регулируется по механизму обратной связи. Уровень ТТГ при этом заболевании снижен вследствие подавления функции гипофиза высокими концентрациями йодтиронинов.

120. Регуляция энергетического метаболизма, роль инсулина и контринсулярных гормонов в обеспечении гомеостаза .

Основные пищевые вещества (углеводы, жиры, белки) окисляются в организме с освобождением свободной энергии, которая используется в анаболических процессах и при осуществлении физиологических функций. Энергетическая ценность основных пищевых веществ выражается в килокалориях и составляет: для углеводов - 4 ккал/г, для жиров - 9 ккал/г, для белков - 4 ккал/г. Взрослому здоровому человеку в сутки требуется 2000-3000 ккал (8000-12 000 кДж) энергии. При обычном ритме питания промежутки между приёмами пищи составляют 4-5 ч с 8-12-часовым ночным перерывом. Во время пищеварения и абсорбтивного периода (2-4 ч) основные энергоносители, используемые тканями (глюкоза, жирные кислоты, аминокислоты), могут поступать непосредственно из пищеварительного тракта. В постабсорбтивном периоде и при голодании энергетические субстраты образуются в процессе катаболизма депонированных энергоносителей. Изменения в потреблении энергоносителей и энергетических затратах координируются путём чёткой регуляции метаболических процессов в разных органах и системах организма, обеспечивающей энергетический гомеостаз. Основную роль в поддержании энергетического гомеостаза играют гормоны инсулин и глюкагон , а также другие контринсулярные гормоны - адреналин, кортизол, йодтиронины и соматотропин. Инсулин и глюкагон играют главную роль в регуляции метаболизма при смене абсорбтивного и постабсорбтивного периодов и при голодании. Абсорбтивный период характеризуется временным повышением концентрации глюкозы, аминокислот и жиров в плазме крови. Клетки поджелудочной железы отвечают на это повышение усилением секреции инсулина и снижением секреции глюкагона. Увеличение отношения инсулин/глюкагон вызывает ускорение использования метаболитов для запасания энергоносителей: происходит синтез гликогена, жиров и белков. Режим запасания включается после приёма пищи и сменяется режимом мобилизации запасов после завершения пищеварения. Тип метаболитов, которые потребляются, депонируются и экспортируются, зависит от типа ткани. Главные органы, связанные с изменениями потока метаболитов при смене режимов мобилизации и запасания энергоносителей, - печень, жировая ткань и мышцы.

Изменения метаболизма в печени в абсорбтивном периоде

После приёма пищи печень становится главным потребителем глюкозы, поступающей из пищеварительного тракта. Почти 60 из каждых 100 г глюкозы, транспортируемой портальной системой, задерживается в печени. Увеличение потребления печенью глюкозы - не результат ускорения её транспорта в клетки (транспорт глюкозы в клетки печени не стимулируется инсулином), а следствие ускорения метаболических путей, в которых глюкоза превращается в депонируемые формы энергоносителей: гликоген и жиры. При повышении концентрации глюкозы в гепатоцитах происходит активация глюкокиназы, превращающей глюкозу в глюкозо-6-фосфат. Глюкокиназа имеет высокое значение К m для глюкозы, что обеспечивает высокую скорость фосфорилирования при высоких концентрациях глюкозы. Кроме того, глюкокиназа не ингибируется глюкозо-6-фосфатом (см. раздел 7). Инсулин индуцирует синтез мРНК глюкокиназы. Повышение концентрации глюкозо-6-фосфата в гепатоцитах обусловливает ускорение синтеза гликогена. Этому способствуют одновременная инактивация гликогенфосфорилазы и активация гликогенсинтазы. Под влиянием инсулина в гепатоцитах ускоряется гликолиз в результате повышения активности и количества ключевых ферментов: глюкокиназы, фосфофруктокиназы и пируваткиназы. В то же время происходит торможение глюконеогенеза в результате инактивации фруктозо-1,6-бисфосфатазы и снижения количества фосфоенолпируваткарбоксикиназы - ключевых ферментов глюконеогенеза. Повышение концентрации глюкозо-6-фосфата в гепатоцитах в абсорбтивном периоде, сочетается с активным использованием NADPH для синтеза жирных кислот, что способствует стимуляции пентозофосфатного пути. Ускорение синтеза жирных кислот обеспечивается доступностью субстратов (ацетил-КоА и NADPH), образующихся при метаболизме глюкозы, а также активацией и индукцией ключевых ферментов синтеза жирных кислот. В абсорбтивном периоде в печени ускоряется синтез белков. Однако количество аминокислот, поступающих в печень из пищеварительного тракта, превышает возможности их использования для синтеза белков и других азотсодержащих соединений. Излишек аминокислот либо поступает в кровь и транспортируется в другие ткани, либо дезаминируется с последующим включением безазотистых остатков в общий путь катаболизма.

Изменения метаболизма в адипоцитах . Основная функция жировой ткани - запасание энергоносителей в форме триацилгли-церолов. Под влиянием инсулина ускоряется транспорт глюкозы в адипоциты. Повышение внутриклеточной концентрации глюкозы и активация ключевых ферментов гликолиза обеспечивают образование ацетил-КоА и глицерол-3-фосфата, необходимых для синтеза ТАГ. Стимуляция пентозофосфатного пути обеспечивает образование NADPH, необходимого для синтеза жирных кислот. Однако биосинтез жирных кислот de novo в жировой ткани человека протекает с высокой скоростью только после предшествующего голодания. При нормальном ритме питания для синтеза ТАГ используются в основном жирные кислоты, поступающие из ХМ и ЛПОНП под действием ЛП-липазы. Вместе с тем при увеличении отношения инсулин/глюкагон гормончувствительная ТАГ-липаза находится в дефосфорилированной неактивной форме, и процесс липолиза тормозится.

Изменение метаболизма в мышцах в абсорбтивном периоде . В абсорбтивном периоде под влиянием инсулина ускоряется транспорт глюкозы в клетки мышечной ткани. Глюкоза фосфорилируется и окисляется для обеспечения клетки энергией, а также используется для синтеза гликогена. Жирные кислоты, поступающие из ХМ и ЛПОНП, в этот период играют незначительную роль в энергетическом обмене мышц. Поток аминокислот в мышцы и биосинтез белков также увеличиваются под влиянием инсулина, особенно после приёма белковой пищи.



gastroguru © 2017