Анаэробная среда. Анаэробная инфекция

Организмы, которые способны получать энергию в условиях отсутствия кислорода, называются анаэробами. Причём к группе анаэробов относятся как микроорганизмы (простейшие и группа прокариотов), так и макроорганизмы, к которым можно отнести некоторые водоросли, грибы, животных и растения. В нашей статье мы подробно рассмотрим анаэробные бактерии, которые используются для очистки сточных вод в локальных очистных сооружениях. Поскольку наряду с ними в очистных сооружениях могут применяться аэробные микроорганизмы, мы проведём сравнение этих бактерий.

Что такое анаэробы, мы разобрались. Теперь стоит понять, на какие виды они делятся. В микробиологии используется следующая таблица классификации анаэробов:

  • Факультативные микроорганизмы . Факультативно-анаэробными называют бактерии, которые могут менять свой метаболический путь, то есть способны менять дыхание с анаэробного на аэробное и наоборот. Можно утверждать, что они живут факультативно.
  • Капнеистические представители группы способны жить только в среде с пониженным содержанием кислорода и повышенным содержанием углекислого газа.
  • Умеренно-строгие организмы могут выживать в среде с содержанием молекулярного кислорода. Однако тут они не способны размножаться. Макроаэрофилы могут и выживать, и размножаться в среде с пониженным парциальным давлением кислорода.
  • Аэротолерантные микроорганизмы отличаются тем, что они не могут жить факультативно, то есть не в состоянии переключаться с анаэробного дыхания на аэробное. Однако от группы факультативно-анаэробных микроорганизмов они отличаются тем, что не гибнут в среде с молекулярным кислородом. В эту группу входит большинство маслянокислых бактерий и некоторые виды молочнокислых микроорганизмов.
  • Облигатные бактерии быстро гибнут в среде с содержанием молекулярного кислорода. Они способны жить только в условиях полной изоляции от него. В эту группу входят инфузории, жгутиковые, некоторые виды бактерий и дрожжи.

Влияние кислорода на бактерии

Любая среда, содержащая кислород, агрессивно воздействует на органические формы жизни. Всё дело в том, что в процессе жизнедеятельности различных форм жизни или из-за влияния некоторых видов ионизирующего излучения образуются активные формы кислорода, которые отличаются большей токсичностью в сравнении с молекулярным веществом.

Главным определяющим фактором для выживания живого организма в условиях кислородной среды является наличие у него антиоксидантной функциональной системы, которая способна к элиминации. Обычно такие защитные функции обеспечиваются одним или сразу несколькими ферментами:

  • цитохром;
  • каталаза;
  • супероксиддисмутаза.

При этом некоторые анаэробные бактерии факультативного вида содержат только один вид фермента – цитохром. Аэробные микроорганизмы имеют целых три цитохрома, поэтому прекрасно себя чувствуют в условиях кислородной среды. А облигатные анаэробы вообще не содержат цитохром.

Однако некоторые анаэробные организмы могут воздействовать на окружающую их среду и создавать подходящий ей окислительно-восстановительный потенциал. Например, определённые микроорганизмы перед началом размножения снижают кислотность среды с показателя 25 до 1 или 5. Это позволяет им оградить себя особым барьером. А аэротолерантные анаэробные организмы, которые в процесс своей жизнедеятельности выделяют перекись водорода, могут повышать кислотность среды.

Важно: для обеспечения дополнительной антиоксидантной защиты, бактерии синтезируют или накапливают низкомолекулярные антиоксиданты, к которым относятся витамины группы А, Е и С, а также лимонная и другие виды кислот.

Как анаэробы получают энергию?

  1. Некоторые микроорганизмы получают энергию в процессе катаболизма различных соединений аминокислот, например, белков и пептидов, а также самих аминокислот. Как правило, такой процесс высвобождения энергии называется гниением. А саму среду, в энергообмене которой наблюдается много процессов катаболизма соединений аминокислот и самих аминокислот, называют гнилостной средой.
  2. Другие анаэробные бактерии способны расщеплять гексозы (глюкозу). При этом могут использоваться разные пути расщепления:
    • гликолиз. После него в среде происходят бродильные процессы;
    • окислительный путь;
    • реакции Энтнера-Дудорова, которые проходят в условиях маннановой, гексуроновой или глюконовой кислоты.

При этом только анаэробные представители могут использовать гликолиз. Он может делиться на несколько разновидностей брожения в зависимости от продуктов, которые образуются после реакции:

  • спиртовое брожение;
  • молочнокислое брожение;
  • вид энтеробактерий муравьиной кислоты;
  • маслянокислое брожение;
  • пропионовокислая реакция;
  • процессы с выделением молекулярного кислорода;
  • метановое брожение (используется в септиках).

Особенности анаэробов для септика

В анаэробных септиках используются микроорганизмы, которые способны производить переработку стоков без доступа кислорода. Как правило, в отсеке, где находятся анаэробы, значительно ускоряются процессы гниения сточных вод. В результате этого процесса твёрдые соединения выпадают на дно в виде осадка. При этом жидкая составляющая стоков качественно очищается от различных органических включений.

Во время жизнедеятельности этих бактерий образуется большое количество твёрдых соединений. Все они оседают на дне локального очистного сооружения, поэтому оно нуждается в регулярной очистке. Если очистку производить не своевременно, то эффективная и слаженная работа очистной установки может быть полностью нарушена и выведена из строя.

Внимание: осадок, добытый после очистки септика, не стоит использовать в качестве удобрения, поскольку в нём содержатся вредные микроорганизмы, способные нанести вред окружающей среде.

Поскольку анаэробные представители бактерий в процесс своей жизнедеятельности вырабатывают метан, очистные сооружения, которые работают с использованием этих организмов, должны укомплектовываться эффективной системой вентиляции. В противном случае неприятный запах способен испортить окружающий воздух.

Важно: эффективность очистки стоков с использованием анаэробов составляет только 60-70 %.

Недостатки использования анаэробов в септиках

Анаэробные представители бактерий, входящие в состав различных биопрепаратов для септиков, имеют следующие недостатки:

  1. Отходы, которые образуются после переработки бактериями сточных вод, не подходят для удобрения почвы из-за содержания в них вредных микроорганизмов.
  2. Поскольку в ходе жизнедеятельности анаэробов образуется большое количество плотного осадка, его удаление необходимо проводить регулярно. Для этого вам придётся вызывать ассенизаторов.
  3. Очистка стоков с использованием анаэробных бактерий происходит не полностью, а только максимум на 70 процентов.
  4. Очистное сооружение, функционирующее с использованием этих бактерий, может издавать очень неприятный запах, который обусловлен тем, что данные микроорганизмы выделяют метан в процессе жизнедеятельности.

Отличие анаэробов от аэробов

Главное отличие между аэробами и анаэробами состоит в том, что первые способны жить и размножаться в условиях с высоким содержанием кислорода. Поэтому такие септики обязательно укомплектовываются компрессором и аэратором для закачивания воздуха. Как правило, эти локальные очистные сооружения не издают такого неприятного запах.

В отличие от них анаэробные представители (как показывает таблица микробиологии, описанная выше) не нуждаются в кислороде. Более того некоторые их виды способны погибнуть при высоком содержании этого вещества. Поэтому такие септики не требуют закачивания воздуха. Для них важно лишь удаление образовавшегося метана.

Ещё одно отличие состоит в количестве образующегося осадка. В системах с аэробами количество осадка намного меньше, поэтому очистку сооружения можно проводить намного реже. Кроме этого, очистку септика можно выполнять без вызова ассенизаторов. Для удаления густого осадка из первой камеры можно взять обычный сачок, а чтобы откачать активный ил, образующийся в последней камере, достаточно использовать дренажный насос. Более того активный ил из очистного сооружения с использованием аэробов можно использовать для удобрения почвы.

Анаэробы - это микробы, способные расти и размножаться без доступа свободного кислорода. Токсическое действие кислорода на анаэробов связано с подавлением активности ряда бактериальных . Различают факультативные анаэробы, способные изменять анаэробный тип дыхания на аэробный, и строгие (облигатные) анаэробы, имеющие только анаэробный тип дыхания.

При культивировании строгих анаэробов применяют химические способы устранения кислорода: добавляют в среду, окружающую анаэробов, вещества, способные поглощать кислород (например, щелочной раствор пирогаллола, гидросульфит натрия), либо вводят в состав вещества, способные восстанавливать поступающий кислород (например, и др.). Можно обеспечить анаэробов физическими способами: механически удалять из питательных сред перед посевом путем кипячения с последующей заливкой поверхности среды жидким , а также использовать анаэростат; производить посев уколом в высокий столбик питательного агара, заливая его затем вязким вазелиновым маслом. Биологический способ обеспечения бескислородных условий для анаэробов состоит в комбинированном, совместном посеве культур и анаэробов.

К патогенным анаэробам относятся палочки , возбудители (см. Клостридии). См. также .

Анаэробы - микроорганизмы, способные существовать и нормально развиваться без доступа свободного кислорода.

Термины «анаэробы» и «анаэробиоз» (жизнь без доступа воздуха; от греч. отрицательной приставки anaer - воздух и bios-жизнь) предложил Л. Пастер в 1861 г. для характеристики условий существования открытых им микробов маслянокислого брожения. Анаэробы обладают способностью разлагать в бескислородной среде органические соединения и таким образом получать необходимую энергию для своей жизнедеятельности.

Анаэробы широко распространены в природе: они обитают в почве, иле водоемов, компостных кучах, в глубине ран, в кишечнике людей и животных - всюду, где происходит разложение органических веществ без доступа воздуха.

По отношению к кислороду анаэробы делятся на строгие (Облигатные) анаэробы, которые не способны расти в присутствии кислорода, и условные (факультативные) анаэробы, которые могут расти и развиваться как в присутствии кислорода, так и без него. К первой группе относится большинство анаэробов из рода Clostridium, бактерии молочнокислого и маслянокислого брожения; ко второй группе - кокки, грибки и др. Кроме этого, существуют микроорганизмы, требующие для своего развития небольшой концентрации кислорода,- микроаэрофилы (Clostridium histolyticum, Clostridium tertium, некоторые представители рода Fusobacterium и Actinomyces).

Род Clostridium объединяет около 93 видов палочковидных грамположитсльных бактерий, образующих терминальные или субтерминальные споры (цветн. рис. 1-6). К патогенным клостридиям принадлежат Cl. perfringens, Cl. oedema-tiens, Cl. septicum, Cl. histolyticum, Cl. sordellii, являющийся возбудителями анаэробной инфекции (газовой гангрены), гангрены легких, гангренозного аппендицита, послеродовых и послеабортных осложнений, анаэробных септицемий, а также пищевых отравлений (Cl. perfringens, типы А, С, D, F).

Патогенными анаэробами являются также Cl. tetani - возбудитель столбняка и Cl. botulinum - возбудитель ботулизма.

Род Bacteroides включает 30 видов бактерий палочковидной формы, не образующих спор, грамотрицательных, большинство из них является строгими анаэробами. Представители этого рода обнаруживаются в кишечном и мочеполовом трактах человека и животных; некоторые виды патогенны, вызывают септицемию и абсцессы.

Анаэробы рода Fusobacterium (небольшие палочки с утолщением на концах, не образующие спор, грамотрицательные), являющиеся обитателями полости рта человека и животных, в ассоциации с другими бактериями вызывают некробациллез, ангину Венсана, гангренозные стоматиты. Анаэробные стафилококки рода Peptococcus и стрептококки рода Peptostreptococcus обнаруживаются у здоровых людей в дыхательных путях, во рту, влагалище, кишечнике. Кокки-анаэробы вызывают различные гнойные заболевания: абсцесс легких, мастит, миозит, аппендицит, сепсис после родов и абортов, перитонит и т. п. анаэробы из рода Actinomyces вызывают актиномикоз у людей и животных.

Некоторые анаэробы также выполняют полезные функции: способствуют перевариванию и усвоению питательных веществ в кишечнике людей и животных (бактерии маслянокислого и молочнокислого брожения), участвуют в круговороте веществ в природе.

Способы выделения анаэробов основаны на создании анаэробных условий (снижении парциального давления кислорода в среде), для создания которых применяют следующие методы: 1) удаление кислорода из среды путем выкачивания воздуха или вытеснения индифферентным газом; 2) химическое поглощение кислорода при помощи гидросульфита натрия или пирогаллола; 3) комбинированное механическое и химическое удаление кислорода; 4) биологическое поглощение кислорода облигатными аэробными микроорганизмами, посеянными на одной половине чашки Петри (метод Фортнера); 5) частичное удаление воздуха из жидкой питательной среды путем кипячения ее, добавления редуцирующих веществ (глюкоза, тиогликолат, цистеин, кусочки свежего мяса или печени) и заливки среды вазелиновым маслом; 6) механическая защита от кислорода воздуха, осуществляемая путем посева анаэробов в высокий столбик агара в тонких стеклянных трубках по методу Вейона.

Методы идентификации выделенных культур анаэробов - см. Анаэробная инфекция (микробиологическая диагностика).

Анаэробные организмы

Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O 2:
1. Облигатные аэробные (нуждающиеся в кислороде) бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии - рост пленкой на поверхности из-за восколипидной мембраны.)
2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста).
3. Факультативные бактерии собираются в основном в верхнем ( является наиболее выгодным, чем гликолиз), однако они могут быть найдены на всем протяжении среды, так как от O 2 не зависят.
4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум - малая концентрация кислорода.
5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке.

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования , конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование .

Анаэробы - обширная группа организмов, как микро-, так и макроуровня:

  • анаэробные микроорганизмы - обширная группа прокариотов и некоторые простейшие.
  • макроорганизмы - грибы , водоросли , растения и некоторые животные (класс фораминиферы , большинство гельминтов (класс сосальщики , ленточные черви , круглые черви (например, аскарида)).

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).

Классификация анаэробов

Согласно устоявшейся в микробиологии классификации, различают:

  • Факультативные анаэробы
  • Капнеистические анаэробы и микроаэрофилы
  • Аэротолерантные анаэробы
  • Умеренно-строгие анаэробы
  • Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам .

До 1991 года в микробиологии выделяли класс капнеистических анаэробов , требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus )

Умеренно-строгий анаэробный организм выживает в среде с молекулярным O 2 , однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O 2 .

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода , то он относится к группе аэротолерантных анаэробов . Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O 2 гибнут - например, представители рода бактерий и архей : Bacteroides , Fusobacterium , Butyrivibrio , Methanobacterium ). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O 2 . Фактор, определяющий жизнеспособность организма в среде кислорода - наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O 2 −),перекиси водорода (H 2 O 2), синглетного кислорода (O .), а также молекулярного кислорода (O 2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:

  • супероксиддисмутаза , элиминирующая супероксид-анион(O 2 −) без энергетической выгоды для организма
  • каталаза , элиминирующая перекись водорода (H 2 O 2) без энергетической выгоды для организма
  • цитохром - фермент, отвечающий за перенос электронов от NAD H к O 2 . Этот процесс обеспечивает существенную энергетическую выгоду организму.

Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов.

Анаэробные микроорганизмы могут активно воздействовать на среду, создавая подходящий окислительно-восстановительный потенциал среды (напр. Cl.perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают pH 2 0 с величины до , ограждая себя восстановительным барьером, другие - аэротолерантные - в процессе жизнедеятельности продуцируют перекись водорода, повышая pH 2 0 .

При этом характерным только для анаэробов является гликолиз , который в зависимости от конечных продуктов реакции разделяют на несколько типов брожению :

  • молочнокислое брожение - род Lactobacillus ,Streptococcus , Bifidobacterium , а также некоторые ткани многоклеточных животных и человека.
  • спиртовое брожение - сахаромицеты , кандида (организмы царства грибов)
  • муравьинокислое - семейство энтеробактерий
  • маслянокислое - некоторые виды клостридий
  • пропионовокислое - пропионобактерии(например, Propionibacterium acnes )
  • брожение с выделением молекулярного водорода - некоторые виды клостридий , ферментация Stickland
  • метановое брожение - например, Methanobacterium

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ . Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н 2 . Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением среды, в то время как расщепление белков и аминокислот - повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

Выделение чистой культуры анаэробов схематично

Культивирование анаэробных организмов в основном является задачей микробиологии.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах - анаэростатах .

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах - добавление содержащих редуцирующие вещества (глюкозу , муравьинокислый натрий и др.), уменьшающие окислительно-восстановительный потенциал.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона - Блера базой является агар-агар с добавлением глюкозы , сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид - аниона , который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии , появляются в глубине агарового столбика.

Среда Китта - Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 - 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak - система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода . Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются - их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Фортнера

Метод Фортнера - посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую - анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) - рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Перетца

Метод Перетца - в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри . Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально - диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса : К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар , лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Плоскирева (бактоагар Ж) - дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные - красные. В составе среды - агар, лактоза, бриллиантовый зелёный , соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород , на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона - Блера ).

Метаболизм анаэробных организмов

Метаболизм анаэробных организмов имеет несколько различных подгрупп:

Анаэробный энергетический обмен в тканях человека и животных

Анаэробное и аэробное энергообразование в тканях человека

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путем, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

3 вида анаэробного пути синтеза АТФ

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм - перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный - синтез (иначе ресинтез ) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
  • Гликолитический - анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием

Анаэробные инфекции доставляют больному немало хлопот, так как их проявления острые и эстетически неприятные. Провокаторами этой группы заболеваний являются спорообразующие или неспорообразующие микроорганизмы, которые попали в благоприятные для жизнедеятельности условия.

Инфекции, вызванные анаэробными бактериями, развиваются стремительно, могут поражать жизненно важные ткани и органы, поэтому их лечение необходимо начинать сразу после постановки диагноза, чтобы избежать осложнений или летального исхода.

Что это такое?

Анаэробная инфекция – патология, возбудителями которой являются бактерии, способные расти и размножаться при полном отсутствии кислорода или его низком напряжении. Их токсины обладают высокой проникающей способностью и считаются крайне агрессивными.

К данной группе инфекционных заболеваний относятся тяжелые формы патологий, характеризующиеся поражением жизненно важных органов и высоким уровнем смертности. У больных обычно преобладают проявления интоксикационного синдрома над местными клиническими признаками. Данная патология отличается преимущественным поражением соединительнотканных и мышечных волокон.

Причины анаэробной инфекции

Анаэробные бактерии относят к условно-патогенным и входят в состав нормальной микрофлоры слизистых оболочек, пищеварительной и мочеполовой систем и кожи. При условиях, провоцирующих их неконтролируемое размножение, развивается эндогенная анаэробная инфекция. Анаэробные бактерии, обитающие в разлагающихся органических остатках и почве, при попадании в открытые раны вызывают экзогенную анаэробную инфекцию.

Развитию анаэробной инфекции способствуют повреждения тканей, создающие возможность проникновения возбудителя в организм, состояние иммунодефицита, массированное кровотечение, некротические процессы, ишемия, некоторые хронические заболевания. Потенциальную опасность представляют инвазивные манипуляции (удаление зубов, биопсия и под.), хирургические вмешательства. Анаэробные инфекции могут развиваться вследствие загрязнения ран землей или попадания в рану других инородных тел, на фоне травматического и гиповолемического шока, нерациональной антибиотикотерапии, подавляющей развитие нормальной микрофлоры.

По отношению к кислороду анаэробные бактерии подразделяют на факультативные, микроаэрофильные и облигатные. Факультативные анаэробы могут развиваться как в обычных условиях, так и при отсутствии доступа кислорода. К этой группе относятся стафилококки, кишечная палочка, стрептококки, шигеллы и ряд других. Микроаэрофильные бактерии представляют собой промежуточное звено между аэробными и анаэробными, для их жизнедеятельности кислород необходим, но в малых количествах.

Среди облигатных анаэробов различают клостридиальные и неклостридиальные микроорганизмы. Клостридиальные инфекции относятся к экзогенным (внешним). Это ботулизм, газовая гангрена, столбняк, пищевые токсикоинфекции. Представители неклостридиальных анаэробой являются возбудителями эндогенных гнойно-воспалительных процессов, таких как перитонит, абсцессы, сепсис, флегмоны и т.д.

Симптомы

Инкубационный период длится около трех суток. Анаэробная инфекция начинается внезапно. У больных преобладают симптомы общей интоксикации над местным воспалением. Их самочувствие резкое ухудшается до появления локальных симптомов, раны приобретают черную окраску.

Больных лихорадит и знобит, у них возникает выраженная слабость и разбитость, диспепсия, заторможенность, сонливость, апатичность, падает кровяное давление, учащается сердцебиение, синеет носогубный треугольник. Постепенно заторможенность сменяется возбуждением, неспокойствием, спутанностью сознания. У них учащается дыхание и пульс.

Состояние ЖКТ также изменяется: язык у больных сухой, обложен, они испытывают жажду и сухость во рту. Кожа лица бледнеет, приобретает землистый оттенок, глаза западают. Возникает так называемое «маска Гиппократа» - «fades Hippocratica». Пациенты становятся заторможенными или резко возбужденными, апатичными, депрессивными. Они перестают ориентироваться в пространстве и собственных чувствах.

Местные симптомы патологии:

  1. Отек тканей конечности быстро прогрессирует и проявляется ощущениями полноты и распирания конечности.
  2. Сильная, нестерпимая, нарастающая боль распирающего характера, не снимаемая анальгетиками.
  3. Дистальные отделы нижних конечностей становятся малоподвижными и практически нечувствительными.
  4. Гнойно-некротическое воспаление развивается бурно и даже злокачественно. При отсутствии лечения мягкие ткани быстро разрушаются, что делает прогноз патологии неблагоприятным.
  5. Газ в пораженных тканях можно обнаружить с помощью пальпации, перкуссии и прочих диагностических методик. Эмфизема, крепитация мягких тканей, тимпанит, легкий треск, коробочный звук - признаки газовой гангрены.

Течение анаэробной инфекции может быть молниеносным (в течение 1 суток с момента операции или травмы), острым (в течение 3-4 суток), подострым (более 4 суток). Анаэробная инфекция часто сопровождается развитием полиорганной недостаточности (почечной, печеночной, сердечно-легочной), инфекционно-токсического шока, тяжелого сепсиса, являющихся причиной летального исхода.

Диагностика анаэробной инфекции

Перед началом лечения важно определить точно, анаэробный или аэробный микроорганизм вызвал инфекцию, а для этого недостаточно только внешней оценки симптомов. Методы определения инфекционного агента могут быть разными:

  • иммуноферментный анализ крови (эффективность и скорость этого метода высокая, как и цена);
  • рентгенография (этот метод наиболее эффективен при диагностике инфекции костей и суставов);
  • бактериальный посев плевральной жидкости, экссудата, крови или гнойных выделений;
  • окраска по Граму взятых мазков;

Лечение анаэробной инфекции

При анаэробной инфекции комплексный подход к лечению предполагает проведение радикальной хирургической обработки гнойного очага, интенсивной дезинтоксикационной и антибактериальной терапии. Хирургический этап должен быть выполнен как можно раньше – от этого зависит жизнь больного.

Как правило, он заключается в широком рассечении очага поражения с удалением некротизированных тканей, декомпрессии окружающих тканей, открытом дренировании с промыванием полостей и ран растворами антисептиков. Особенности течения анаэробной инфекции нередко требуют проведения повторных некрэктомий, раскрытия гнойных карманов, обработки ран ультразвуком и лазером, озонотерапии и т. д. При обширной деструкции тканей может быть показана ампутация или экзартикуляция конечности.

Важнейшими составляющими лечения анаэробной инфекции являются интенсивная инфузионная терапия и антибиотикотерапия препаратами широкого спектра действия, высокотропными к анаэробам. В рамках комплексного лечения анаэробной инфекции находят свое применение гипербарическая оксигенация, УФОК, экстракорпоральная гемокоррекция (гемосорбция, плазмаферез и др.). При необходимости пациенту вводится антитоксическая противогангренозная сыворотка.

Прогноз

Исход анаэробной инфекции во многом зависит от клинической формы патологического процесса, преморбидного фона, своевременности установления диагноза и начала лечения. Уровень летальности при некоторых формах анаэробной инфекции превышает 20%.

Наверное, никого уже не удивишь информацией о том, что в любом организме живут бактерии. Все прекрасно знают и то, что это соседство может быть безопасным до поры до времени. Это касается и анаэробных бактерий. Они живут и по возможности неспешно размножаются в организме, выжидая момента, когда можно было бы нанести атаку.

Инфекции, вызываемые анаэробными бактериями

От большинства других микроорганизмов анаэробные бактерии отличаются живучестью. Они способны выживать там, где другие бактерии не протянут и нескольких минут, – в бескислородной среде. Более того, при долгом контакте с чистым воздухом эти микроорганизмы гибнут.

Проще говоря, анаэробные бактерии нашли для себя уникальную лазейку – они поселяются в глубоких ранах и отмирающих тканях, где уровень защиты организма минимальный. Таким образом, микроорганизмы получают возможность беспрепятственно развиваться.

Все виды анаэробных бактерий условно можно поделить на патогенные и условно-патогенные. К числу микроорганизмов, представляющих реальную угрозу для организма, относятся следующие:

  • пептококки;
  • клостридии;
  • пептострептококки;
  • некоторые виды клостридий (анаэробных спорообразующих бактерий, которые встречаются в природе и живут в желудочно-кишечных трактах людей и животных).

Некоторые анаэробные бактерии не просто живут в организме, но и способствуют его нормальному функционированию. Яркий пример – бактероиды. В обычных условиях эти микроорганизмы – обязательная составляющая микрофлоры толстой кишки. А такие разновидности анаэробных бактерий, как фузобактерии и превотеллы обеспечивают здоровую флору полости рта.

В разных организмах анаэробная инфекция проявляется по-разному. Все зависит и от состояния здоровья больного, и от вида поразившей его бактерии. Самая распространенная проблема – инфекции и нагноения глубоких ран. Это яркий пример того, к чему может привести жизнедеятельность анаэробных бактерий. Помимо этого, микроорганизмы могут быть возбудителями таких болезней:

  • некротическая пневмония;
  • перитонит;
  • эндометрит;
  • бартолинит;
  • сальпингит;
  • эпиема;
  • периодонтит;
  • синусит (в том числе хроническая его форма);
  • инфекции нижней челюсти и прочие.

Лечение инфекций, вызванных анаэробными бактериями

Проявления и способы лечения анаэробных инфекций также зависят от возбудителя. Абсцессы и нагноения обыкновенно лечатся с помощью хирургического вмешательства. Отмершие ткани должны быть удалены очень тщательно. После чего рана не менее тщательно дезинфицируется и на протяжении нескольких дней регулярно обрабатывается антисептиками. В противном случае бактерии продолжат размножаться и проникать глубже в организм.

Нужно быть готовым к лечению сильнодействующими препаратами. Зачастую эффективно уничтожить анаэробную, как, в общем-то, и любой другой вид инфекции, без антибиотиков не удается.

Особого лечения требуют анаэробные бактерии во рту. Именно они вызывают неприятный запах изо рта. Чтобы бактерии перестали получать питательные вещества, в свой рацион нужно добавить как можно больше свежих овощей и фруктов (самыми полезными в борьбе с бактериями считаются апельсины и яблоки), а в мясе, фастфуде и прочей вредной пище себя желательно ограничить. И конечно же, не забывайте регулярно чистить зубы. Частички пищи, остающиеся в промежутках между зубами, – благоприятная почва для размножения анаэробных бактерий.

Соблюдая эти несложные правила, можно не только избавиться от неприятного , но и предотвратить появление зубного налета.



gastroguru © 2017