Биологическое действие ионизирующих излучений. Факторы, определяющие поражение организма

Реферат

Тема:

План:

Введение

1 Прямое и косвенное действие ионизирующего излучения

2 Воздействие ионизирующего излучения на отдельные органы и организм в целом

3 Мутации

4 Действие больших доз ионизирующих излучений на биологические объекты

5. Два вида облучения организма: внешнее и внутреннее

Заключение

Литература

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы -- в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.

Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.

При изучении действия радиации на живой организм были определены следующие особенности:

· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия -- инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.

· Действие от малых доз может суммироваться или накапливаться.

· Излучение действует не только на данный живой организм, но и на его потомство -- это так называемый генетический эффект.

· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.

· Не каждый организм в целом одинаково воспринимает облучение.

· Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.

1. ПРЯМОЕ И КОСВЕННОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Радиоволны, световые волны, тепловая энергия солнца -- все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови -- один из распространенных эффектов прямого воздействия радиации. Зар я женные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов Эле к трическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома)

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных "свободных радикалов".

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал -- с у пероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидрооксил и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы -- лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изм е нения возникают в результате взаимодействия свободных радикалов друг с другом или со "здоровыми" молекулами Биохимические изменения происходят как в момент облучения, так и на протяж е нии многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОТДЕЛЬНЫЕ ОРГАНЫ И ОРГАНИЗМ В ЦЕЛОМ

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани -- на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопора-жаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.

Очень восприимчив к излучению хрусталик глаза. Погибая, клетки хрусталика становятся непрозрачными, разрастаясь, приводят к катаракте, а затем и к полной слепоте. Это может произойти при дозах около 2 Гр.

Радиочувствительность организма зависит от его возраста. Небольшие дозы при облучении детей могут замедлить или вовсе остановить у них рост костей. Чем меньше возраст ребенка, тем сильнее подавляется рост скелета. Облучение мозга ребенка может вызвать изменения в его характере, привести к потере памяти. Кости и мозг взрослого человека способны выдержать гораздо большие дозы. Относительно большие дозы способны выдерживать большинство органов. Почки выдерживают дозу около 20 Гр, полученную в течение месяца, печень -- около 40 Гр, мочевой пузырь -- 50 Гр, а зрелая хрящевая ткань -- до 70 Гр. Чем моложе организм, тем при прочих равных условиях, он более чувствителен к воздействию радиации.

Видовая радиочувствительность возрастает по мере усложнения организма. Это объясняется тем, что в сложных организмах больше слабых звеньев, вызывающих цепные реакции выживания. Этому способствуют и более сложные системы управления (нервная, иммунная), которые частично или полностью отсутствуют в более примитивных особях. Для микроорганизмов дозы, вызывающие 50% смертности, составляют тысячи Гр, для птиц -- десятки, а для высокоорганизованных млекопитающих -- единицы (рис. 2.15).

3. МУТАЦИИ

Каждая клетка организма содержит молекулу ДНК, которая несет информацию для правильного воспроизведения новых клеток.

ДНК -- это дезоксирибонуклеиновая кислота, состоящая из длинных, закругленных молекул в виде двойной спирали. Функция ее заключается в обеспечении синтеза большинства белковых молекул из которых состоят аминокислоты. Цепочка молекулы ДНК состоит из отдельных участков, которые кодируются специальными белками, образуя так называемый ген человека.

Радиация может либо убить клетку, либо исказить информацию в ДНК так, что со временем появятся дефектные клетки. Изменение генетического кода клетки называют мутацией. Если мутация происходит в яйцеклетке спермы, последствия могут быть ощутимы и в далеком будущем, т.к. при оплодотворении образуются 23 пары хромосом, каждая из которых состоит из сложного вещества, называемого дезоксирибонуклииновой кислотой. Поэтому мутация, возникающая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям.

По мнению Э. Дж. Холла, такие нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменение числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться в том случае, если у обоих родителей мутантным является один и тот же ген). Такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще. Мутация в самотической клетке будет оказывать влияние только на сам индивид. Вызванные радиацией мутации не отличаются от естественных, однако при этом увеличивается сфера вредного воздействия.

Описанные рассуждения основаны лишь на лабораторных исследованиях животных. Прямых доказательств радиационных мутаций у человека пока нет, т.к. полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений.

Однако, как подчеркивает Джон Гофман, недооценка роли хромосомных нарушений, основанная на утверждении "их значение нам неизвестно", является классическим примером решений, принимаемых невежеством. Допустимые дозы облучения были установлены еще задолго до появления методов, позволяющих установить те печальные последствия, к которым они могут привести ничего не подозревающих людей и их потомков.

4. ДЕЙСТВИЕ БОЛЬШИХ ДОЗ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

Живой организм очень чувствителен к действию ионизирующей радиации. Чем выше на эволюционной лестнице стоит живой организм, тем он более радиочувствителен. Радиочувствительность -- многосторонняя характеристика. "Выживаемость" клетки после облучения зависит одновременно от ряда причин: от объема генетического материала, активности энергообеспечивающих систем, соотношения ферментов, интенсивности образования свободных радикалов Н и ОН.

При облучении сложных биологических организмов следует учитывать процессы, происходящие на уровне взаимосвязи органов и тканей. Радиочувствительность у различных организмов варьируется довольно широко (рис. 2.16).

Организм человека, как совершенная природная система, еще более чувствителен к радиации. Если человек перенес общее облучение дозой 100-200 рад, то у него спустя несколько дней появятся признаки лучевой болезни в легкой форме. Ее признаком может служить уменьшение числа белых кровяных клеток, которое устанавливается при анализе крови. Субъективным показателем для человека является возможная рвота в первые сутки после облучения.

Средняя степень тяжести лучевой болезни наблюдается у лиц, подвергшихся воздействию излучения в 250-400 рад. У них резко снижается содержание лейкоцитов (белых кровяных клеток) в крови, наблюдается тошнота и рвота, появляются подкожные кровоизлияния. Летальный исход наблюдается у 20% облученных спустя 2-6 недель после облучения.

При облучении дозой 400-600 рад развивается тяжелая форма лучевой болезни. Появляются многочисленные подкожные кровотечения, количество лейкоцитов в крови значительно уменьшается. Летальный исход болезни 50% .

Очень тяжелая форма лучевой болезни возникает при облучении дозой выше 600 рад. Лейкоциты в крови полностью исчезают. Смерть наступает в 100% случаев.

Описанные выше последствия радиационного облучения характерны для случаев, когда медпомощь отсутствует.

Для лечения облученного организма современная медицина широко применяет такие методы, как кровезамещение, пересадка костного мозга, введение антибиотиков, а также другие методы интенсивной терапии. При таком лечении возможно исключить смертельный исход даже при облучении дозой до 1000 рад. Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой, в том числе и биологическими объектами. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Ионизирующее воздействие нарушает в первую очередь нормальное течение биохимических процессов и обмен веществ. В зависимости от величины поглощенной дозы излучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества попадают внутрь организма, например, с пищей или ингаляционным путем). Рассмотрим действие ионизирующего излучения, когда источник облучения находится вне организма.

Биологических эффект ионизирующего излучения в данном случае зависит от суммарной дозы и времени воздействия излучения, его вида, размеров облучаемой поверхности и индивидуальных особенностей организма. При однократном облучении всего тела человека возможны биологические нарушения в зависимости от суммарной поглощенной дозы излучения.

При облучении дозами, в 100-1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения. Причем, поглощенная доза излучения, вызывающая поражение отдельных частей тела, превышает смертельную поглощенную дозу облучения всего тела. Смертельные поглощенные дозы для отдельных частей тела следующие: голова -- 20 Гр, нижняя часть живота -- 30 Гр, верхняя часть живота -- 50 Гр, грудная клетка -- 100 Гр, конечности -- 200 Гр.

Степень чувствительности различных тканей к облучению неодинакова. Если рассматривать ткани органов в порядке уменьшения их чувствительности к действию облучения, то получим следующую последовательность: лимфатическая ткань, лимфатические узлы, селезенка, зобная железа, костный мозг, зародышевые клетки. Большая чувствительность кроветворных органов к радиации лежит в основе определения характера лучевой болезни.

При однократном облучении всего тела человека поглощенной дозой 0,5 Гр через сутки после облучения может резко сократиться число лимфоцитов. Уменьшается также и количество эритроцитов (красных кровяных телец) по истечении двух недель после облучения. У здорового человека насчитывается порядка 10 4 красных кровяных телец, причем ежедневно вое-производится 10 .У больных лучевой болезнью такое соотношение нарушается и в результате организм погибает.

Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие (рис. 2.17).

Внешнее облучение альфа-, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма- и нейтронное облучение, которые проникают в ткань на большую глубину и разрушают ее, о чем более подробно рассказывалось выше.

5. ДВА ВИДА ОБЛУЧЕНИЯ ОРГАНИЗМА: ВНЕШНЕЕ И ВНУТРЕННЕЕ

Ионизирующее излучение может двумя способами оказывать воздействие на человека. Первый способ -- внешнее облучение от источника, расположенного вне организма, которое в основном зависит от радиационного фона местности на которой проживает человек или от других внешних факторов. Второй -- внутреннее облучение, обусловленное поступлением внутрь организма радиоактивного вещества, главным образом с продуктами питания.

Продукты питания, не соответствующие радиационным нормам, имеют повышенное содержание радионуклидов, инкорпорируются с пищей и становятся источником излучения непосредственно внутри организма.

Большую опасность представляют продукты питания и воздух, содержащие изотопы плутония и америция, которые обладают высокой альфа активностью. Плутоний, выпавший в результате Чернобыльской катастрофы, является самым опасным канцерогенным веществом. Альфа излучение имеет высокую степень ионизации и, следовательно, большую поражающую способность для биологических тканей.

Попадание плутония, а также америция через дыхательные пути в организм человека вызывает онкологию легочных заболеваний. Однако следует учесть, что отношение общего количества плутония и его эквивалентов америция, кюрия к общему количеству плутония, попавшего в организм ингаляционным путем незначительно. Как установил Беннетт, при анализе ядерных испытаний в атмосфере, на территории США соотношение выпадения и ингаляции равно 2,4 млн. к 1, то есть подавляющее большинство альфа-содержащих радионуклидов от испытаний ядерного оружия ушли в землю не оказав влияния на человека. В выбросах Чернобыльского следа наблюдались также частицы ядерного топлива, так называемые горячие частицы размером около 0,1 микрона. Эти частицы также могут проникать ингаляционным путем в легкие и представлять серьезную опасность.

Внешнее и внутреннее облучения требуют различные меры предосторожности, которые должны быть приняты против опасного действия радиации.

Внешнее облучение в основном создается гамма содержащими радионуклидами, а также рентгеновским излучением. Его поражающая способность зависит от:

а) энергии излучения;

б) продолжительности действия излучения;

в) расстояния от источника излучения до объекта;

г) защитных мероприятий.

Между продолжительностью времени облучения и поглощенной дозой существует линейная зависимость, а влияние расстояния на результат радиационного воздействия имеет квадратичную зависимость.

Для защитных мероприятий от внешнего облучения используются в основном свинцовые и бетонные защитные экраны на пути излучения. Эффективность применения материала в качестве экрана для защиты от проникновения рентгеновских или гамма-лучей зависит от плотности материала, а также от концентрации содержащихся в нем электронов.

Если от внешнего облучения можно защититься специальными экранами или другими действиями, то с внутренним облучением это сделать не представляется возможным.

Различают три возможных пути, по которым радионуклиды способны попасть внутрь организма:

а) с пищей;

б) через дыхательные пути с воздухом;

в) через повреждения на коже.

Следует отметить, что радиоактивные элементы плутоний и америций проникают в организм в основном с пищей или при дыхании и очень редко через повреждения кожи.

Как отмечает Дж. Холл, органы человека реагируют на поступившие в организм вещества исходя исключительно из химической природы последних, вне зависимости от того, являются они радиоактивными или нет. Химические элементы такие как натрий и калий, входят в состав всех клеток организма. Следовательно, их радиоактивная форма, введенная в организм, будет также распределена по всему организму. Другие химические элементы имеют склонность накапливаться в отдельных органах, как это происходит с радиоактивным йодом в щитовидной железе или кальцием в костной ткани.

Проникновение радиоактивных веществ с пищей внутрь организма существенно зависит от их химического взаимодействия. Установлено, что хлорированная вода увеличивает растворимость плутония, и как следствие инкорпорацию его во внутренние органы.

После того, как радиоактивное вещество попало в организм, следует учитывать величину энергии и вид излучения, физический и биологический период полураспада радионуклида. Биол о гическим периодом полувыведения называют время, которое необходимо для выведения из организма половины радиоактивного вещества. Некоторые радионуклиды выводятся из организма быстро, и поэтому не успевают нанести большого вреда, в то время как другие сохраняются в организме в течение значительного времени.

Период полувыведения радионуклидов, существенно зависит от физического состояния человека, его возраста и других факторов. Сочетание физического периода полураспада с биологическим, называется эффективным периодом полураспада --наиболее важным в определении суммарной величины излучения. Орган, наиболее подверженный действию радиоактивного вещества называют критическим. Для различных критических органов разработаны нормативы, определяющие допустимое содержание каждого радиоактивного элемента. На основании этих данных созданы документы, регламентирующие допустимые концентрации радиоактивных веществ в атмосферном воздухе, питьевой воде, продуктах питания. В Беларуси в связи с аварией на ЧАЭС действуют Республиканские допустимые уровни содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-92). В Гомельской области введены по некоторым пищевым продуктам питания, например детского, более жесткие нормативы. С учетом всех вышеперечисленных факторов и нормативов, подчеркнем, что средн е годовая эффективная эквивалентная доза облучения человека не должна превышать 1 мЗв в год.

ЛИТЕРАТУРА:

1. Савенко В.С. Радиоэкология. -- Мн.: Дизайн ПРО, 1997.

2. М.М. Ткаченко, “Радіологія (променева діагностика та променева терапія)”

3. А.В. ШУМАКОВ Краткое пособие по радиационной медицине Луганск -2006

4. Бекман И.Н. Лекции по ядерной медицине

5. Л.Д. Линденбратен, Л.Б. Наумов Медицинская рентгенология. М. Медицина 1984

6. П.Д. Хазов, М.Ю. Петрова. Основы медицинской радиологии. Рязань,2005

7. П.Д. Хазов. Лучевая диагностика. Цикл лекций. Рязань. 2006

Происходит испускание различных видов излучений, частиц, которые отрицательно влияют на здоровье человека. В первую очередь, это излучение альфа, бета и гамма .

α-лучи – это поток положительно заряженных ядер атомов гелия, β-лучи – это поток отрицательно заряженных электронов, γ-лучи – это высокочастотное электромагнитное излучение. Главная опасность перечисленных видов излучений – их ионизационная способность.

Ионизирующее действие радиации на живой организм

Результатом ионизации атомов и молекул является нарушение нормального функционирования живых клеток организма, что и лежит в основе болезней, называемых лучевыми. Основная величина, характеризующая величину ионизирующего действия излучения на живой организм – это поглощенная доза излучения D:

где E – энергия излучения,
m – масса тела.

То есть доза облучения зависит от того, какой энергией обладает ионизирующее излучение, а также от массы тела. Поглощенная доза излучения выражается в греях (1 Гр). 1 Гр = 100 Р (рентгенам). 1 Р – величина, которая при t = 0˚C и давлении 760 мм рт.ст. в единицу объема сухого воздуха создает количество ионизирующих излучений 3*10-10 Кл.

Если излучение продолжается достаточно долго, то доза облучения накапливается. Имеет большое значение время облучения или экспозиции, которое показывает, сколько времени человек находился под воздействием ионизирующих излучений. Для характеристики времени облучения следует учитывать период полураспада T – промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое. Для различных элементов это время разное.

Биологическое действие радиации

Ущерб от радиоактивного облучения зависит от силы излучения и от массы тела, но еще имеет значение и какие органы подверглись облучению. На разные части организма радиация будет оказывать различное действие. В связи с этим вводится еще одна величина, характеризующая биологическое действие радиации. Это эквивалентная доза H:

где D – поглощенная доза,
K – коэффициент качества.

Единицей измерения эквивалентной дозы является зиверт (1 Зв). Коэффициент качества K показывает, во сколько раз радиационная опасность от воздействия на органы данного вида облучения больше, чем от воздействия γ-излучения. Для каждого органа K имеет свое значение.

Защита от радиоактивного воздействия

Как следует защищаться от радиоактивного воздействия? В первую очередь необходимо защищать органы дыхания, чтобы с воздухом продукты радиоактивного распада не попадали внутрь человека. Именно так они наносят наибольший вред. Не менее важной является защита кожи.

Дело в том, что α и β-частицы в первую очередь поражают именно кожу. Для защиты от таких излучений нужен специальный костюм. А от γ-лучей до конца защититься костюмом не получится. Так как γ-лучи – это высокочастотное излучение, и специальными костюмами его можно только ослабить. Поэтому все противорадиационные бункеры и спецсооружения строятся именно для защиты от гамма-излучения. Лучшая защита от всех видов ионизирующих излучений – это бетон и свинец.

Воздействие радиации на человека зависит от количества энергии ионизирующего излучения, которая поглощается тканями человека. Количество энергии, которая поглощается единицей массы ткани, называется поглощенной дозой . Единицей измерения поглощенной дозы является грей (1 Гр= 1 Дж/кг). Часто поглощенную дозу измеряют в радах (1 Гр = 100 рад).

Однако не только поглощенная доза определяет воздействие радиации на человека. Биологические последствия зависят от вида радиоактивного излучения. Например, альфа-излучение в 20 раз более опасно, чем гамма- или бета-излучение.

Биологическая опасность излучения определяется коэффициентом качества К. При умножении поглощенной дозы на коэффициент качества излучения получается доза, определяющая опасность излучения для человека, которая получила название эквивалентной.

Эквивалентная доза имеет специальную единицу измерения — зиверт (Зв). Часто для измерения эквивалентной дозы используется более мелкая единица — бэр (биологический эквивалент рада), 1 Зв = 100 бэр. Итак, основными параметрами радиации являются следующие (табл. 1).

Таблица. 1. Основные параметры радиации

Экспозиционная и эквивалентная дозы радиации

Для количественной оценки ионизирующего действия рентгеновского и гамма-излучения в сухом атмосферном воздухе используется понятие «экспозиционная доза» — отношение полного заряда ионов одного знака, возникающих в малом объеме воздуха, к массе воздуха в этом объеме. За единицу этой дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица — рентген (Р).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр). Грэй - доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Эта доза не учитывает, какой вид излучения воздействовал на организм человека. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой: ее измеряют в системе СИ в единицах, называемых зивертами (Зв).

Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани. Эта доза также измеряется в зивертах.

Специальная единица эквивалентной дозы - бэр - поглощенная доза любого вида излучения, которая вызывает равный биологический эффект с дозой в 1 рад рентгеновского излучения. Рад - специальная единица поглощенной дозы зависит от свойств излучения и поглощающей среды.

Поглощенная, эквивалентная, эффективная и экспозиционная дозы, отнесенные к единице времени, называются мощностью соответствующих доз.

Условная связь системных единиц:

100 Рад = 100 Бэр = 100 Р = 13 В = 1 Гр.

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины — поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН , которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходят торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа лейкоцитов (лейкоцитоз), раннее старение и др.

Воздействие ионизирующего излучения на организм человека

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н+ и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70 % воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме. Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, нс свойственные организму (токсины). А это в свою очередь влияет на процессы жизнедеятельности отдельных органов и систем организма: нарушаются функции кроветворных органов (красного костного мозга), увеличивается проницаемость и хрупкость сосудов, происходит расстройство желудочно-кишечного тракта, снижается сопротивляемость организма (ослабевает иммунная система человека), происходит его истощение, перерождение нормальных клеток в злокачественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изменения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Перечисленные эффекты развиваются в различные временные промежутки: от секунд до многих часов, дней, лет. Это зависит от полученной дозы и времени, в течение которого она была получена.

Острое лучевое поражение (острая лучевая болезнь) возникает тогда, когда человек в течение нескольких часов или даже минут получает значительную дозу. Принято различать несколько степеней острого лучевого поражения (табл. 2).

Таблица 2. Последствия острого лучевого поражения

Эти градации весьма приблизительны, поскольку зависят от индивидуальных особенностей каждого организма. Например, наблюдались случаи гибели людей и при дозах менее 600 бэр, зато в других случаях удавалось спасти людей и при дозах более 600 бэр.

Острая лучевая болезнь может возникнуть у работников или населения при авариях на объектах ЯТЦ, других объектах, использующих ионизирующие излучения, а также при атомных взрывах.

Хроническое облучение (хроническая лучевая болезнь) возникает при облучении человека небольшими дозами в течение длительного времени. При хроническом облучении малыми дозами, в том числе и от радионуклидов, попавших внутрь организма, суммарные дозы могут быть весьма большими. Наносимое организму повреждение, по крайней мере частично, восстанавливается. Поэтому доза в 50 бэр, приводящая при однократном облучении к болезненным ощущениям, при хроническом облучении, растянутом во времени на 10 и более лет, к видимым явлениям не приводит.

Степень воздействия радиации зависит от того, является ли облучение внешним или внутренним (облучение при попадании радионуклида внутрь организма). Внутреннее облучение возможно при вдыхании загрязненного радионуклидами воздуха, при заглатывании зараженной питьевой воды и пищи, при проникновении через кожу. Некоторые радионуклиды интенсивно поглощаются и накапливаются в организме. Например, радиоизотопы кальция, радия, стронция накапливаются в костях, радиоизотопы йода — в щитовидной железе, радиоизотопы редкоземельных элементов повреждают печень, радиоизотопы цезия, рубидия угнетают кроветворную систему, повреждают семенники, вызывают опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие радиоизотопы, т. к. альфа-частица обладает из-за своей большой массы очень высокой ионизирующей способностью, хотя ее проникающая способность не велика. К таким радиоизотопам относятся изотопы плутония, полония, радия, радона.

Нормирование ионизирующего излучения

Гигиеническое нормирование ионизирующего излучения осуществляется по СП 2.6.1-758-99. Нормы радиационной безопасности (НРБ-99). Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с источниками радиации (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

В табл. 3. приведены основные дозовые пределы облучения. Основные дозовые пределы облучения персонала и населения, указанные в таблице, не включают в себя дозы от природных и медицинских источников ионизирующего излучения, атакже дозы, полученные в результате радиационных аварий. На эти виды облучения в НРБ-99 устанавливаются специальные ограничения.

Таблица 3. Основные дозовые пределы облучения (извлечение из НРБ-99)

* Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А. Далее все нормативные значения для категории персонала приводятся только для группы А.

** Относится к среднему значению в покровном слое толщиной 5 мг/см 2 . На ладонях толщина покровного слоя — 40 мг/см 2 .

Помимо дозовых пределов облучения в НРБ-99 устанавливаются допустимые уровни мощности дозы при внешнем облучении, пределы годового поступления радионуклидов, допустимые уровни загрязнения рабочих поверхностей и т. д., которые являются производными от основных дозовых пределов. Числовые значения допустимого уровня загрязнения рабочих поверхностей приведены в табл. 4.

Таблица 4. Допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, частиц/(см 2 . мин) (извлечение из НРБ-99)

Объект загрязнения

a-активные нуклиды

β-активные нуклиды

отдельные

Неповрежденная кожа, полотенца, слецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в сан шлюзах

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

Для ряда категорий персонала устанавливаются дополнительные ограничения. Например, для женщин в возрасте до 45 лет эквивалентная доза, приходящаяся на нижнюю часть живота, не должна превышать 1 мЗв в месяц.

При установлении беременности женщин из персонала работодатели обязаны переводить их на другую работу, нс связанную с излучением.

Для учащихся в возрасте до 21 года, проходящих обучение с источниками ионизирующего излучения, принимаются дозовые пределы, установленные для лиц из населения.

Катастрофа! Грядет та самая экологическая катастрофа. И главная причина, по которой остановить её неизбежно – человечество и его повседневная деятельность.

К примеру, взрыв на Чернобыльской АЭС нанёс непоправимый урон всей экосистеме, расположенной на площади 200 000 квадратных километров. Процент здорового населения среди проживающих вблизи с каждым годом падает. Город Припять спустя много лет до сих пор считается зоной отчуждения.

Чернобыль стал печальным опытом человечества, но показательный урок «Влияние радиоактивных веществ на живые организмы» не был усвоен и техногенное облучение продолжает воздействовать на человека.

Что такое радиация

Радиация – явление, встречающееся в радиоактивных элементах, ядерных реакторах, взрывах. Она губительно сказывается на здоровье и жизнедеятельности всех живых организмов, в том числе и человека.

Отличие радиации от радиоактивности в том, что первая существует лишь до тех пор, пока не будет поглощена каким-либо веществом. В свою очередь вторая присутствует долгое время.

Вред, исходящий от этого явления:

  1. В малых дозах приводит к онкологическим заболеваниям.
  2. Нарушает здоровую генетику.
  3. Разрушает клетки ткани.
  4. Приводит к различным заболеваниям.
  5. Заражение местности, земли, воздуха.

Радиационная биология следит и изучает пути и степень воздействия излучений на разные биологические объекты.

Главное помнить – всё зависит от полученной дозы заражения. Именно она и определяет вероятность летального исхода или иного возможного причинённого вреда человеку, животному или окружающей среде.

Типы радиации

Радиация была до появления человечества и увеличилась в своём количестве с его появлением. Потому и подразделяется на два основных типа – радиация естественная и техногенная. К естественной мы относим радионуклиды, попадающие из космоса, обитающие в земной коре, и в результате жизни самой природы. К техногенным принято относить те, которые вырабатываются в результате жизнедеятельности человечества.

Все виды излучения, в свою очередь, представлены в виде альфа-частиц, бета-частиц и гамма-радиации. Альфа и бета-частицы опасны при попадании внутрь. Цезий и кобальт, представляющие гамма-радиацию, вызывают передозировку при внешнем облучении.

Больше всего при облучении страдают лёгкие, кишечник. Наименее уязвимы кожа, костная ткань и костный мозг.

Естественная радиация

Как бы человек ни старался, большую часть облучения живой мир планеты получает от естественных источников. К таковым относятся:

  • космос;
  • внешнее облучение от радионуклидов земного происхождения;
  • внутренне облучение от радионуклидов земного происхождения;

Космогенные попадают к нам в результате разных процессов, возникающих во Вселенной. При высокой активности солнца, вспышках звёзд – они попадают к нам. В глубинах недр земли также присутствует источник облучения. Никакого значительного вреда не несёт, хотя и попадает всюду – в воздух, воду, всё живое. Внешний вред наносят такие элементы, как уран и торий. Внутреннее действие – когда облучение попадает через вдыхание, пищу или питье. И если внешний вред возможно устранить путём удаления частиц с поверхности живого организма, то внутренний вред исправить гораздо сложнее, а иногда и вовсе невозможно.

В местах высокой концентрации родона строительство домов и нежилых зданий запрещено.

Техногенная радиация

Два подвида:

  • Природная. Природная – при добыче полезных ископаемых.
  • Искусственная. Искусственная получаются в результате ядерных реакций.

С каждым годом растёт количество и тех, и других техногенных способов повышения радиации. Потому как аварийных выбросов, ядерных взрывов, поисков новых нефтяных и газовых месторождений меньше не становится.

И если природную активность мы не в силах остановить, то вышеперечисленные методы сократить в наших силах.

Примеры источников искусственной радиации:

  • атомные электростанции;
  • военная техника;
  • рабочие ядерные реакторы;
  • места ядерных испытаний;
  • зоны утечки ядерного топлива;
  • медицинская техника.

При использовании природного газа повышается общий радиационный фон.

Дозировка. Влияние радиации на живые организмы

Как бы нас не информировали и не убеждали в том, что радиация безвредна и небольшие дозы не представляют опасности для всего живого – определённые риски всё же существуют. Разберёмся, насколько воздействие радиации на живые организмы опасно, какие есть дозировки, какой будет достаточно и последствия для организма.

Больше всего облучению подвержены дети, даже плод, находящийся в утробе.

25 рентген и меньше – опасности не представляют. Пример – рентгеновское облучение, как правило, дозировка которого настолько мала, что, выпив 1 стакан молока или виноградного сока, вы полностью избавите себя от облучения такой степени.

Доза облучения 50 рентген – если получена однократно, то временно снижается количество лимфоцитов; если такая цифра накоплена за всю человеческую жизнь, то это существенной угрозы не несёт.

  • 50 – 100 – вызывают тошноту, рвотный рефлекс, на фоне общего снижения количества лимфоцитов;
  • 100-150 – редко приводит к смертельному исходу, чаще возникает ощущение «алкогольного похмелья»; при кратковременном облучении приводит в 0,5% случаев к развитию онкологических заболеваний;
  • 200-250 рентген, полученных за короткий промежуток времени, приводит к развитию и прогрессированию лучевой болезни, вероятность летального исхода высокая;
  • 300-350 – в половине случаев отравления приводит к смертности в ближайшие 30 дней;
  • 500-600 – приводит к смерти почти в каждом случае, возникает в первые 2 недели;
  • 700- 1000 – летальный исход практически сразу же и в каждом из случаев заражения.

Если говорить об общей допустимой и «безболезненной» для всего организма дозировке, то она составляет не более 5 рад в год.

Охрана природы

Если с человечеством понятно, то хотелось бы донести, насколько сильно и какое влияние радиации на природу?

Многие учёные вплотную занимаются охраной природы и оберегают мир от экологической катастрофы. Одним из способов является ограждение природного мира от техногенной радиации, от ядерных взрывов, сжигания и хранения ядерных отходов и т. д.

  1. Загрязнение почвы.
  2. Такие территории требуют долгой и затратной реабилитации для последующего использования.
  3. Растения.
  4. Хоть лиственные виды более приспособлены и устойчивы к повышению радиационного фона, всё же при высоких цифрах и они погибают.
  5. Животные и насекомые.

Особое влияние радиации на животных, ведь они самые невинные и незащищенные, в сравнении с более разумными обитателями планеты.

После аварии на Чернобыльской АЭС вблизи уменьшилось количество дождевых червей, хотя спустя годы снова восстановилось за счёт тех, кто оказался стойким к ионизирующей радиации.

Вещи, заражённые радиацией в быту

Помимо предметов, которые попадают к нам из заражённых мест, например, из Чернобыля или автомобили из Японии после аварии на Фукусиме, – есть мелкие предметы быта, которые несут в себе опасность.

К таковым относят:

  1. Антиквариат, сохранившийся после Великой Отечественной войны или Первой мировой.
  2. После трагедии в Японии – товары китайского производства могут иметь повышенный радиационный фон.
  3. Автомобили, привезённые из Японии после аварии на Фукусиме, другие товары.
  4. Хрусталь, гранит, гранитные камни и все изделия, выполненные из природного материала.
  5. Некоторые виды бетона или кирпича, в зависимости от мест добывания глинозёма.
  6. Старинные наручные часы со стрелками, покрытыми радием и люминофором.
  7. Керамическая или глиняная посуда, покрытая жёлтой или оранжевой урановой глазурью (сейчас её не изготавливают).
  8. Светящиеся в темноте игрушки и приборы.
  9. Бразильский орех.
  10. Дверные светящиеся таблички, показывающие вход и выход.
  11. Бентонитовая глина, содержащаяся в кошачьем наполнителе для туалета.
  12. Сигареты.
  13. Глянцевые страницы.

Получается, что, кроме ежегодного рентгеновского облучения в поликлиниках и больницах, мы получаем дополнительную дозу облучения от предметов, которые окружают нас в быту. Следовательно, если есть малейшая возможность сократить дозировку, придерживаясь простых правил хранения продуктов, отказываясь от пищи, заражённой радиацией и не покупая автомобили с повышенной радиацией — обязательно это сделайте.

Сегодня можно самостоятельно замерить уровень радиации в вашем доме, в ванне, проверить степень вреда при покупке строительных материалов. Для этого используют дозиметр. Цена стартует от 2500 рублей за бытовые приборы, доходя до суммы в 10 раз выше за профессиональные.

Сравнение радиации в разных помещениях и на разном этаже

Допустимая норма радиационного фона составляет 50 мкР в час или 0,3 мЗ/час.

Если посмотреть на уровень радиации в школе в разных помещениях или дома, то он будет примерно таким:

  • Кабинет информатики – 13-16 мкР/ч.
  • Столовая – 10-14 мкР/ч.
  • Спортивный зал – 13-15 мкР/ч.
  • Школьный двор — мкР/ч.

Радиационный фон домов и зданий:

  • Панельные дома – 0,017 мкР/ч.
  • Кирпичные дома – 0,016 мкР/ч.
  • Нежилые помещения, общественные – 0,017 мкР/ч.

Делаем вывод – степень излучения ничтожна и абсолютно безвредна. Хотя, например, на Фукусиме уровень радиации сегодня составляет 530 зивертов в час, что в сотни раз превышает норму. В Хабаровске в 2011 году, во время аварии на Фукусиме, фон был повышен и составлял до 27 мкР/ч, а во Владивостоке и того меньше. В Москве через онлайн-мониторинг можно обнаружить сегодня 0,12 мЗ/час, что немного превышает норму. Соответственно, учитывая все факторы, при которых человек получает облучение, можно сказать, что оно поступает отовсюду, и от самой природы, и от техногенных причин. Избежать этого невозможно!

В США разработали специальные гели, которые наносятся на любую поверхность и впитывают с неё радионуклиды.

Заключение

Получается, что радиация как явление присутствует множество лет, и она неизбежно. Потому мы не имеем права уничтожить один из источников облучения, саму природу. Вопрос, который должны задавать мы сами – как человечество радиационно воздействует на окружающий мир и каким образом способствует повышению радиационного фона:

  1. Разработка и испытание ядерного оружия.
  2. Строительство атомных станций.
  3. Добыча газа, нефти, прочих полезных ископаемых.
  4. Сжигание разного рода отходов.

Помимо загрязнения воздуха, происходит орошение рек, озёр, следовательно, гибель целой экосистемы.

Чтобы заставить задуматься над экологической проблемой, приближающей катастрофическую развязку, нужно:

  • Ужесточать законодательство.
  • Переходить на новые технологии.
  • Проводить регулярные конференции и форумы в международном ключе, которые будут давать возможность находить новые способы устранения нависшей угрозы.

Чтобы избежать малого повышения радиационного фона, нужно проводить несложные мероприятия:

  1. Проветривать комнаты.
  2. Озеленять дворы, территории парков и скверов.
  3. Не сжигать мусор и не загрязнять им город.
  4. Иметь дозиметр для измерения фона радиации в жилом помещении.
  5. Вести здоровый образ жизни.
  6. Возле компьютеров и телевизоров выращивать фиалки, кактусы.

Что делать, чтобы помочь организму вывести накопленные или полученные радиоактивные вещества?

Один из действенных и дешёвых способов – заняться спортом. Причём активным и изнуряющим, чтобы «семь потов сошло». Именно через увеличенное потоотделение выходят все заряжённые частицы и элементы. Тот же процесс происходит при посещении бани или сауны.

Насыщение организма природными витаминами позволит уменьшить риск получения облучения. Сильный организм способен лучше себя защитить.

При явно выраженном радиационном заражении принимайте йод. Для накопления этого вещества в организме, поскольку в таком случае места для радиоактивного изотопа уже не останется, и он не будет впитываться вашим организмом.

Еда, которая выводит радионуклиды

Безусловно, нет такого коктейля, выпив который, уровень радиационной заражённости человека сразу упадёт, но какие-то отдельные продукты всё же снижают дозировку:

  • Соли калия и кальция, витамины группы B выводят радионуклиды. Продукты – мак, сыр, кунжут, молоко, зелень, кукуруза, курага, свёкла, морская капуста, чернослив, изюм, шпинат, треска, чечевица, авокадо.
  • Зелёный чай способствует выведению компьютерной радиации, квас и натуральные соки также благотворно сказываются на организме, который был подвержен облучению.
  • Репчатый и зелёный лук, чеснок – способны вывести небольшую дозу радионуклидов;
  • В аптеке предлагаются разные биоактивные добавки – морские водоросли. Соблюдая инструкцию по применению можно помочь своему организму.
  • Рассол из бабушкиных помидорчиков или огурчиков, припасённых к зиме. Пейте на здоровье!

Мы сами строим своё будущее, и только мы решаем, какое оно будет у наших детей. А какой фон радиации станет нормой в их повседневности — напрямую зависит от того, какие способы её уменьшения мы найдём сегодня, но влияние радиоактивного излучени я на живые организмы, безусловно, есть!

План Введение Введение Понятие «Биологическое действие радиации» Понятие «Биологическое действие радиации» Прямое и косвенное действие излучения Прямое и косвенное действие излучения Воздействие излучения на отдельные органы и организм в целом Воздействие излучения на отдельные органы и организм в целом Мутации Мутации Действие больших доз излучений на биологические объекты Действие больших доз излучений на биологические объекты Два вида облучения организма: внешнее и внутреннее Два вида облучения организма: внешнее и внутреннее Как защититься от радиации? Как защититься от радиации? Крупнейшие радиационные аварии и катастрофы в мире Крупнейшие радиационные аварии и катастрофы в мире


Введение Фактор радиации присутствовал на нашей планете с момента ее образования. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы в середине XX. Излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением. Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.


Понятие «Биологическое действие радиации» И зменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения) или потоков заряженных частиц, бета-излучения и нейтронов. D=E/m 1Гр=1Дж/1Кг D - поглощенная доза; E- поглощенная энергия; m-масса тела


При изучении действия радиации на живой организм были определены следующие особенности: Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Действие от малых доз может суммироваться или накапливаться. Действие от малых доз может суммироваться или накапливаться. Излучение действует не только на данный живой организм, но и на его потомство это так называемый генетический эффект. Излучение действует не только на данный живой организм, но и на его потомство это так называемый генетический эффект. Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови. Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови. Не каждый организм в целом одинаково воспринимает облучение. Не каждый организм в целом одинаково воспринимает облучение. Облучение зависит от частоты. Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.


Прямое и косвенное действие излучения Радиоволны, световые волны, тепловая энергия солнца все это разновидности излучений. Действие излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены. Кроме прямого облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды.


Прямое действие излучения Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Попадая в клетки, излучение нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".


Косвенное действие излучения Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции.


Воздействие излучения на отдельные органы и организм в целом В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Радиочувствительность организма зависит от его возраста. Небольшие дозы при облучении детей могут замедлить или вовсе остановить у них рост костей. Чем меньше возраст ребенка, тем сильнее подавляется рост скелета.


Мутации Каждая клетка организма содержит молекулу ДНК, которая несет информацию для правильного воспроизведения новых клеток. ДНК это дезоксирибонуклеиновая кислота, состоящая из длинных, закругленных молекул в виде двойной спирали. Функция ее заключается в обеспечении синтеза большинства белковых молекул из которых состоят аминокислоты.


Радиация может либо убить клетку, либо исказить информацию в ДНК так, что со временем появятся дефектные клетки. Изменение генетического кода клетки называют мутацией. Мутация, возникающая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям. Допустимые дозы облучения были установлены еще задолго до появления методов, позволяющих установить те печальные последствия, к которым они могут привести ничего не подозревающих людей и их потомков.


Действие больших доз излучений на биологические объекты Живой организм очень чувствителен к действию ионизирующей радиации. Чем выше на эволюционной лестнице стоит живой организм, тем он более радио чувствителен. "Выживаемость" клетки после облучения зависит одновременно от ряда причин: от объема генетического материала, активности энергообеспечивающих систем, соотношения ферментов, интенсивности образования свободных радикалов Н и ОН. Организм человека, как совершенная природная система, еще более чувствителен к радиации. Если человек перенес общее облучение дозой рад, то у него спустя несколько дней появятся признаки лучевой болезни в легкой форме. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма.


Два вида облучения организма: внешнее и внутреннее Излучение может двумя способами оказывать воздействие на человека. Первый способ внешнее облучение от источника, расположенного вне организма, которое в основном зависит от радиационного фона местности на которой проживает человек или от других внешних факторов. Второй внутреннее облучение, обусловленное поступлением внутрь организма радиоактивного вещества, главным образом с продуктами питания. Внешнее и внутреннее облучения требуют различные меры предосторожности, которые должны быть приняты против опасного действия радиации.


Как защититься от радиации? Защита временем. чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения. Защита временем. чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения. Защита расстоянием заключается в том, что излучение уменьшается при удалении от компактного источника. То есть если на расстоянии 1 метра от источника радиации дозиметр показывает 1000 микрорентген в час, то на расстоянии 5 метров около 40 мкР/час, вот почему часто источники радиации так сложно обнаружить. На больших расстояниях они «не ловятся», надо чётко знать место, где искать. Защита расстоянием заключается в том, что излучение уменьшается при удалении от компактного источника. То есть если на расстоянии 1 метра от источника радиации дозиметр показывает 1000 микрорентген в час, то на расстоянии 5 метров около 40 мкР/час, вот почему часто источники радиации так сложно обнаружить. На больших расстояниях они «не ловятся», надо чётко знать место, где искать. Защита веществом. Необходимо стремиться к тому, чтобы между Вами и источником радиации было как можно больше вещества. Чем оно плотнее и чем его больше, тем значительнее часть радиации, которую оно может поглотить. Защита веществом. Необходимо стремиться к тому, чтобы между Вами и источником радиации было как можно больше вещества. Чем оно плотнее и чем его больше, тем значительнее часть радиации, которую оно может поглотить.


Крупнейшие радиационные аварии и катастрофы в мире В ночь с 25 на 26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора.


В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.


11 марта 2011 года в Японии произошло самое мощное за всю историю страны землетрясение. В результате на АЭС Онагава была разрушена турбина, возник пожар, который удалось быстро ликвидировать. На АЭС Фукусима-1 ситуация сложилась очень серьезная - в результате отключения системы охлаждения расплавилось ядерное топливо в реакторе блока 1, снаружи блока была зафиксирована утечка радиации, в 10- километровой зоне вокруг АЭС проведенаэвакуация.



gastroguru © 2017