Кровоснабжение костей. Развитие, cтроение, кровоснабжение и иннервация костного мозга

    Наличие живой, делящейся костной клетки, которая образует регенерат

    Сохранность или восстановление кровоснабжения костной ткани

    Щель между отломками должна быть отграничена от окружающих тканей

По плоскости и характеру излома различают:

    поперечные, косопоперечные, поперечно-зубчатые - эти переломы относятся к группе опорных;

    косые, винтообразные, оскольчатые, многооскольчатые (крупно- и мелкооскольчатые, раздробленные) – эти переломы относятся к группе не опорных переломов

Ситуация в области перелома

(формула перелома)

мягкие ткани

отломок щель отломок

мягкие ткани

Три источника кровоснабжения диафизов трубчатых костей

    Сосуды, проникающие через надкостницу.

    Сосуды, идущие по Гаверсовым каналам.

    Артерии nutricia, проникающие в костно-мозговой канал, спускающиеся вниз, но дающие коллатерали и вверх

В зависимости от характера перелома может происходить повреждение одного (редко), двух или всех трёх источников кровоснабжения.

При переломе типа «трещины» страдают сосуды Гаверсовых каналов и незначительно надкостницы.

При полном переломе со смещением отломков полностью страдают сосуды проникающие из надкостницы в результате её перенапряжения и отслойки почти на всем протяжении диафиза, сосуды Гаверсовых каналов. Кровоснабжение концов отломков осуществляется только за счет нисходящих (верхнего отломка) и восходящих сосудов костно-мозгового канала.

При оскольчатых и многооскольчатых переломах кровоснабжение осколков полностью нарушено и резко страдает концов отломков.

Классификация открытых переломов диафизов длинных трубчатых костей

(по А.В. Каплан и О.Н. Марковой)

Вид перелома

Поперечный, косой, винтообразный, оскольчатый, многооскольчатый

(без смещения, со смещением)

Размер раны

I - точечные или малые

II – средние

III – большие

(10 см и более)

А колотая

с нарушением жизнеспособности тканей

Б ушибленная

раздавливание мягких тканей на обширном пространстве

В размозженная

раздробленные кости, повреждение магистральных сосудов

    С малой колотой раной – её можно ушить.

    Со средней ушибленной и размозженной раной – необходимо провести первичную хирургическую обработку раны и первичную кожную пластику по О.Н. Марковой.

    С большой ушибленной и размозженной раной – пластика раны невозможна, подготовка больного к вторичной пластике; временно для лечения раны используют некролитическую мазь.

    Особые раны (с повреждением магистральных нервов и сосудистых стволов, угрожающих омертвлением конечности) – вопрос ампутации или реконструктивных операций зависит от сил и средств и решается индивидуально.

СХЕМА И.С. КОЛЕСНИКОВА

Характеристика состояния

Нормальное

Стресс-компенсированное

в норме, тахикардия

Тревожное

снижено, но выше критических цифр

Угрожающее

на уровне критических цифр

Критическое

ниже уровня критических цифр

Катастрофическое

не определяется

Схема И.С. Колесникова позволяет :

    быстро сориентироваться в тяжести состояния пострадавшего и начать проведение лечебно-профилактических мероприятий, после чего продолжить поиск причин этого состояния и грамотно решить все вопросы внутрипунктовой и эвако-транспортной сортировки;

    грамотно решать вопросы внутрипунктовой и эвако-транспортной сортировки при массовом поступлении пострадавших.

При медицинской сортировке на основании оценки их общего состояния, характера повреждений, возникших осложнений и с учетом прогноза исхода пострадавших делят на 5 сортировочных групп.

I сортировочная группа – пострадавшие с крайне тяжёлыми повреждениями несовместимыми с жизнью, а также находящиеся в терминальном (агональном) состоянии. Пострадавшие этой группы нуждаются только в симптоматическом лечении и не подлежат эвакуации. Прогноз неблагоприятный. (АД = 0, катастрофическое состояние по Колесникову)

II сортировочная группа – пострадавшие с тяжёлыми повреждениями сопровождающимися быстро нарастающими опасными для жизни расстройствами основных функций организма, для устранения которых необходимо срочное принятие лечебно-профилактических мер. Прогноз может быть благоприятным при условии оказания медицинской помощи. Пострадавшие данной группы нуждаются в помощи по неотложным жизненным показаниям.(АД ниже 60, критическое состояние по Колесникову)

III сортировочная группа – пострадавшие с тяжёлыми и средней тяжести повреждениями не представляющими непосредственной угрозы для жизни. Медицинская помощь им оказывается во вторую очередь или может быть отсрочена до поступления на следующий этап медицинской эвакуации. (АД 60-70, угрожающее состояние по Колесникову)

I V сортировочная группа – пострадавшие с повреждениями средней тяжести, с нерезко выраженными функциональными расстройствами или без таковых. Прогноз благоприятный. Направляются на следующий этап эвакуации без оказания медицинской помощи. (АД выше 70, тревожное состояние по Колесникову)

V сортировочная группа – пострадавшие с легкими повреждениями, не нуждающиеся в оказании медицинской помощи на данном этапе. Направляются на амбулаторное лечение. (АД норма, стресс-компенсированное состояние по Колесникову)

Обильное кровоснабжение длинных трубчатых костей , необходимое для поддержания высокой концентрации парциального кислорода для нормальной функции костных клеток, осуществляется с помощью питающих артерий и вен, сосудов метафиза и надкостницы. Диаметр питающих вен меньше, чем у соответствующих им артерий, т.е. часть крови оттекает из кости по другой сосудистой системе. Считается, что в норме около двух третей кортикального слоя кости снабжаются кровью из питающих артерий. Сосуды надкостницы вносят значительный вклад в кровоснабжение Гаверсовых систем только на определенных участках кости. Следует подчеркнуть, что значимость последнего типа сосудов резко возрастает при травмах, переломах и операциях, вызывающих глубинное повреждение питающих артерий и вен. Это необходимо учитывать при лечении переломов и проведении различных ортопедических вмешательств (Мюллер и др., 1996).

Микроциркуляторное русло кости тесно связано с Гаверсовой системой костной ткани и локализуется внутри канала остеона. Следует подчеркнуть, что образование полноценных остеонов начинается как раз с формирования кровеносного сосуда, т.к. процессы пролиферации и дифференцировки остеобластов в остеокласты с формированием костного матрикса и его минерализации невозможны без поддержания высокого парциального давления кислорода в тканевой жидкости и доставки необходимых питательных веществ. Выполнить это условие можно только в том случае, если расстояние от сосуда до остеобласта не превышает 100-200 мкм. Капилляры врастают в резорбированную остеокластами кость. Затем в апикальной части сосуда происходит пролиферация и дифференцировка остеогенных прекурсоров в остеобласты, которые формируют новый остеон. В связи с этим, сложность строения сети кровеносных сосудов кости заключается в том, что она в течение жизни постоянно обновляется путем образования новых структур и отмирания (за счет остеолизиса) старых. При этом сосуды Гаверсовой системы сохраняют связь с сосудами костного мозга и надкостницы. Ее артерии и венулы, как правило, ориентированы параллельно оси кости, могут идти в виде одиночных капилляров или образовывать сеть многочисленных сосудов и нервных волокон. Соединение (анастомозы) между параллельными сосудами проходят, в так называемых, Фолькмановских каналах (Хэм, Кормак, 1983; Омельянченко и др., 1997).

(Омельянченко и др., 1997)


Так как сосуды Гаверсовой системы идут параллельно друг другу, то при травме, переломе, введении штифтов, гвоздей, пластин, спиц наблюдается нарушение кровотока в зоне, расположенной между двумя ближайшими неповрежденными анастомозами, что приводит к развитию некроза ткани и частому присоединению инфекционных процессов.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Естественным условием для поддержания нормальной жизнедеятельности кости служит правильное кровообращение и кровоснабжение - артериальное и венозное. Как и всякая другая высокоразвитая и дифференцированная ткань, костная ткань нуждается для обеспечения местного обмена веществ вообще и минерального в особенности, для сохранения структурного анатомо-физиологического постоянства в урегулированном местном кровоснабжении.

Только при этом условии можно себе представить нормальное кальциевое равновесие в костях и правильную игру всех других факторов, от которых еще зависит непрерывное жизненное обновление костной ткани.

Нарушения местного кровообращения могут происходить в самых широких количественных и качественных рамках. Далеко не все патологические процессы в костных сосудах и не все механизмы, нарушающие упорядоченную жизнедеятельность этой ткани, в настоящее время в достаточно удовлетворяющей нас степени разгаданы. Хуже всего изучено значение венозного кровоснабжения. Узким местом остеопатологии служит также наша неосведомленность о лимфообращении.

Что же касается артериального кровообращения в кости, то исключительно важную роль в костной патологии играет полное прекращение артериального снабжения. Оно по достоинству оценено лишь в рентгенологический период остеопатологии. Полный перерыв артериальной крови влечет за собой омертвение костной ткани вместе с костным мозгом-асептический остеонекроз. Формы местного асептического остеонекроза весьма разнообразны и составляют предмет обширной главы частной клинической рентгенодиагностики об остеохондропатиях. Но асептические некрозы имеют большое симптоматическое значение и при большом ряде повреждений и всяческих заболеваний костей и суставов. Именно рентгенологическое исследование играет выдающуюся и решающую роль в прижизненном распознавании и во всем деле изучения асептических некрозов костной системы. Наконец, уже давно хорошо известны некрозы септические, воспалительные, самой различной этиологии.

Уменьшение кровообращения, его редукция, мыслится в результате сужения просвета питающих артерий как временного и переменчивого функционального, так и стойкого и; нередко необратимого анатомического характера. Сужение артериального русла наступает в результате частичного тромбоза и эмболии, утолщения стенок, механического сжатия или сдавления сосуда извне, его перегиба, скрючивания и т. д. Замедленный.местный кровоток может, однако, происходить и при нормальном просвете питающих артериальных сосудов и даже при расширении их просветов. Усиленный приток крови связан с представлением об активной гиперемии, когда в единицу времени ткани промываются повышенным количеством артериальной крови. При всех этих патологических явлениях кость в принципе ничем не отличается от других органов, как, например, мозг, сердце, почка, печень и т. д.

Но нас и здесь в первую очередь интересует специфическая функция кости - костеобразование. После тщательных исследований Лериша и Поликара в настоящее время считается твердо установленным и общепринятым, что понижение кровоснабжения - анемия - является фактором, именно усиливающим костетворение в положительную сторону, т. е. ограничение местного кровоснабжения любого характера и происхождения сопровождается уплотнением костной ткани, ее прибылью, консолидацией, остеосклерозом. Усиление же местного кровоснабжения - гиперемия - служит причиной именно рассасывания костной ткани, ее убыли, декальцинации, рарефикации, остеопороза, притом также независимо от природы этой гиперемии.

С первого взгляда эти далеко идущие и крайне важные для остеопатологии обобщения могут показаться невероятными, нелогичными, противоречащими нашим общим представлениям в нормальной и патологической физиологии. Однако на самом деле это обстоит именно так. Объяснение кажущегося противоречия лежит, вероятно, в том, что недостаточно принимается во внимание фактор скорости кровотока, возможно, и проницаемость сосудистой стенки при анемии и при гиперемии. На основании рентгенологических и капилляроскопических параллельных наблюдений над остеопорозом у раненных в спинной мозг и в периферические нервы, произведенных у нас Д. А. Файнштейн, можно полагать, что остеопороз развивается не в результате усиленного внутрикостного кровообращения, а является следствием венозного застоя в костной ткани. Но так или иначе остается фактом, что при недеятельности конечности, при местной ее иммобилизации независимо от причины обездвижения, местное костное кровоснабжение в какой-то мере усиливается. Иными словами, при местной травме, острых и хронических воспалительных процессах и длинном ряде самых различных заболеваний именно это ведет к рарефикации, к развитию остеопороза.

В патологических условиях корковое вещество легко „спонгиозируется”, а губчатое вещество „кортикализируется”. Еще в 1843 г. Н. И. Пирогов в своем „Полном курсе прикладной анатомии человеческого тела” писал: „наружный вид каждой кости есть осуществленная идея назначения этой кости”.

В 1870 г. Юлиус Вольф (Julius Wolff) опубликовал свои тогда нашумевшие наблюдения над внутренней архитектоникой костного вещества. Вольф показал, что когда при нормальных условиях кость меняет свою функцию, то соответственно новым механическим требованиям перестраивается и внутренняя структура губчатого вещества. Вольф считал, что механические силы являются для строения кости „абсолютно доминирующими”. Широко известны замечательные исследования о функциональном строении кости П. Ф. Лесгафта. Он был убежден в том, что, „зная деятельность отдельных частей человеческого тела, можно определить форму и размер их и наоборот - по форме и размерам отдельных частей органов движения определить качество и степень их деятельности”. Взгляды П. Ф. Лесгафта и Вольфа получили в биологии и медицине весьма широкий отклик, они вошли во все учебники, так называемые „законы трансформации костей” были приняты за основу врачебных представлений о костном строении. И поныне еще многие рассматривают по старой традиции механические силы как основной и решающий, чуть ли не единственный фактор, объясняющий дифференцированное строение кости. Другие же исследователи отвергают учение П. Ф. Лесгафта и Вольфа как грубо механистическое.

Такое положение требует от нас критического рассмотрения теории трансформации костей. Как с точки зрения диалектического материализма следует относиться к этим „законам трансформации”? На этот вопрос мы вкратце можем ответить следующими соображениями.

Прежде всего, о каких конкретно механических силах здесь идет речь? Какие силы оказывают влияние на кости? Эти силы - сжатие (\’сдавление), растяжение, сгибание и разгибание (в физическом, а не в медицинском смысле), а также скрючивание (торсия). Например, в проксимальном отделе бедренной кости - этой излюбленной модели для аналитического учета механических факторов - при стоянии человека головка бедра испытывает сдавление сверху вниз, шейка выдерживает сгибание и разгибание, точнее сжатие в нижнемедиальной и растяжение в верхнелатеральной части, диафиз же находится под воздействием сжимания и вращения вокруг его длинной оси, т. е. скрючивания. Наконец, все костные элементы подвергаются еще из-за постоянно действующей мышечной тяги (тракции) силе растяжения.

Прежде всего, имеют ли кости действительно лесгафтовское „функциональное строение”, действительно ли можно сказать словами Ф. Энгельса, что в костях „форма и функция обусловливают взаимно друг друга?” На эти вопросы следует ответить недвусмысленно - положительно. Несмотря на ряд возражений, все же „законы трансформации” анатомо-физиологически и клинико-рентгенологически в основном себя оправдывают. Факты говорят в пользу их соответствия действительному положению вещей, объективной научной истине. Действительно, каждая кость при нормальных и патологических условиях приобретает внутреннее строение, отвечающее этим условиям ее жизнедеятельности, тонко дифференцированным физиологическим ее отправлениям, ее узко специализированным функциональным качествам. Пластинки губчатого вещества располагаются именно так, что в основном совпадают с направлениями сжатия и растяжения, сгибания и скрючивания. Параллельно идущие стропила на мацерирован-ной кости и их теневые изображения на рентгенограммах говорят о наличии в соответствующих направлениях силовых плоскостей, характеризующих функцию данной кости. Костные элементы являются в основном каким-то прямым выражением и воплощением механических силовых траекторий, а вся архитектоника костных трабекул - это наглядный показатель самой тесной взаимосвязи, которая существует между формой и функцией. При наименьшем количестве крепкого минерального строительного материала костное вещество приобретает наибольшие механические качества, прочность и упругость, сопротивление к сжатию и растяжению, к сгибанию и скрючиванию.

При этом важно подчеркнуть, что архитектоника кости выражает не столько опорную, статическую функцию отдельных костей скелета, сколько совокупность сложных двигательных, моторных его функций в целом и в каждой кости и даже в каждом отделе кости в частности. Иными словами, расположение и направление костных стропил становится понятным, если учесть также весьма сложные по силе и направлениям векторы, определяемые мышечной и сухожильной тягой, связочным аппаратом и другими элементами, характеризующими скелет как многорычаговую двигательную систему. В этом смысле понятие о костном скелете как о пассивной части двигательного, локомоторного аппарата нуждается в серьезной поправке.

Таким образом, основная ошибка Вольфа и всех за ним следующих заключается в их непомерной переоценке значения механических факторов, в одностороннем их толковании. Еще в 1873 г. наш отечественный автор С. Рубинский отверг утверждение Вольфа о существовании геометрического подобия в строении губчатого вещества кости во всех возрастах и указал на ошибочность взгляда Вольфа, „который смотрит на кость как на неорганическое тело”. Хотя механические силы и играют известную роль в формировании костной структуры, сводить всю эту структуру к одним только силовым траекториям, как это вытекает из всего изложенного в этой главе, само собой разумеется, никак нельзя, - есть еще ряд исключительно важных моментов, помимо механических, которые влияют на образование костной ткани и на ее структурное оформление и которые никак не могут быть объяснены механическими закономерностями. Несмотря на их прогрессивное значение в периоде возникновения и пропаганды, эти исследования в силу своей подкупающей убедительности все же объективно задержали, затормозили единственно правильное всестороннее изучение всей совокупности факторов, определяющих остеогенез. Авторам, огульно отрицающим механические силы в качестве фактора костеобразования, следует указать, что это неправильная, антинаучная, упрощенческая точка зрения. Вместе с тем наша философия возражает не против учета в биологии и медицине реально существующих и действующих механических факторов, а отвергает механистический метод, механистическое мировоззрение.

Именно в рентгенологическом исследовании биологическая наука и медицина получили исключительно богатый эффективный метод прижизненного, да и посмертного определения и изучения функционального строения элементов костного скелета. У живого это изучение к тому же возможно и в эволютивно-динамическом аспекте. Значение этого метода трудно переоценить. Механические влияния сказываются в остеогенезе особенно при перестройке скелета и отдельных костей в зависимости от трудовых, профессиональных, спортивных и других моментов в рамках физиологического приспособления, но не менее ярко они проявляются и в патологических условиях - при изменении механических сил в случаях анкилозов суставов, артродезов, неправильно сросшихся переломов, последствий огнестрельных ранений и т. д. Все это подробно изложено ниже.

Точность и достоверность результатов рентгенологического исследования, однако, как, впрочем, и всякого метода, зависят от его правильного использования и толкования. В этой связи мы должны сделать несколько существенных замечаний.

Во-первых, исследования многочисленных авторов, особенно Я. Л. Шика, показали, что так называемые костные балки, трабекулы - это на самом деле вовсе не обязательно всегда именно балки, т. е. колонки, цилиндрические стропила, а скорее всего плоскостные образования, пластинки, сплющенные кулисы. Эти последние и следует считать основными анатомо-физиологическими элементами губчатого строения кости. Поэтому, пожалуй, более правильно вместо привычного и даже общепринятого наименования „балки” пользоваться термином „пластинки”. И вполне правы Я. JI. Шик и С. В. Гречишкин, когда указывают, что рентгенограммы губчатой кости воспроизводят в виде характерных полосок и линейных теней главным образом те скопления костных пластинок, которые располагаются орторентгеноградно, т. е. по ходу рентгеновых лучей, своими гранями, которые „стоят ребром”. Расположенные же в плоскости проекции костные пластинки представляют лишь слабое препятствие для рентгеновых лучей и на снимке по этой причине плохо дифференцируются.

Говоря о рентгенологическом методе исследования костной структуры, мы в связи с этим должны здесь еще раз подчеркнуть, что структура костей в рентгенологическом изображении - это понятие далеко не чисто морфологическое и анатомо-физиологическое, а в значительной степени и скиалогически обусловленное. Рисунок губчатой кости на рентгенограмме - это в какой-то мере условное понятие, так как рентгенографически в одной плоскости суммарно изображаются многочисленные костные пластинки, фактически располагающиеся в самой объемно-трехмерной телесной кости во многих слоях и плоскостях. Рентгенологическая картина в значительной мере зависит не только и не столько от формы и размеров, сколько от расположения структурных элементов (Я. Л. Шик и С. В. Гречишкин). Значит рентгенологическое исследование в какой-то мере искажает истинную морфологию отдельных костей и отделов костей, имеет свои специфические особенности, и отождествлять безоговорочно рентгенологическую картину с анатомо-физиологической - это означает совершать принципиальную и практическую ошибку.

Склонностью к всевозможным раздражениям, особенно болевым, но далеко не только болевым (Лериш, В. В. Лебеденко и С. С. Брюсова). Уже над этими фактами из области анатомии и физиологии костной иннервации - изобилием весьма чувствительных нервных проводов в костной ткани - надо призадуматься, рисуя себе общую картину нормальной и патологической физиологии костной системы. Именно потому, что скелет - это сложнейшая система со множеством самых разнообразных отправлений, что скелет осуществляет такое сложное жизненное явление в целостном человеческом организме, каким необходимо считать костеобразование, вся его работа и прежде всего это костеобразование не могут происходить без важнейшего воздействия центральной нервной системы.

Но, к сожалению, идеи нервизма еще мало проникли в область нормальной остеологии и в остеопатологию. Еще у Ф. Энгельса в его „Диалектике природы” мы находили гениальное высказывание о значении нервной системы для позвоночных животных: „Vertebrata. Их существенный признак: группировка всего тела вокруг нервной системы. Этим дана возможность для развития самосознания и т. д. У всех прочих животных нервная система нечто побочное, здесь она основа всего организма; нервная система. . . завладевает всем телом и направляет его согласно своим потребностям”. Передовые взгляды корифеев отечественной медицины С. П. Боткина, И. М. Сеченова, И. П. Павлова и его школы не нашли еще должного отражения и развития в этой главе медицины.

Между тем каждодневные клинические наблюдения всегда и раньше заставляли наших наиболее выдающихся представителей клинического мышления полагать, что нервная система играет весьма значительную роль в этиологии, патогенезе, симптоматологии, течении, лечении и исходах костных и костно-суставных заболеваний и повреждений. Из клиницистов, преимущественно хирургов, уделявших большое внимание нервной системе в костной патологии, следует назвать такие имена, как Н. И. Пирогов, Н. А. Вельяминов, В. И. Разумовский, В. М. Бехтерев, Н. Н. Бурденко, М. М. Дитерихс, В. М. Мыш, А. Л. Поленов, А. В. Вишневский, а также Т. П. Краснобаев, П. Г. Корнев, С. Н. Давиденков, М. О. Фридланд, М. Н. Шапиро, Б. Н. Цыпкин и др.

Укажем на новаторскую экспериментальную работу И. И. Кузьмина, который еще в 1882 г. убедительно показал влияние перерезки нервов на процессы сращения переломов костей, а также на выдающуюся докторскую диссертацию В. И. Разумовского, опубликованную в 1884 г. В этой экспериментальной работе автор на основании тщательных гистологическиих исследований пришел к выводу, что центральная нервная система влияет на питание костной ткани; он считал, что это происходит через посредство вазомоторов. Особенно значительны заслуги Г. И. Турнера, который в своих многочисленных статьях и ярких устных выступлениях всегда, уже с новых, современных нам позиций, подчеркивал роль нервного фактора и наиболее последовательно проводил в клинике костных заболеваний передовые идеи нервизма. Его последователями остались С. А. Новотельное и Д. А. Новожилов.

Представители теоретической экспериментальной и клинической медицины, как и рентгенологии, однако, до самого последнего времени ограничивались в области нервизма в костной патологии изучением лишь некоторых, относительно узких глав и разделов.

Особенно много внимания было уделено главным образом закономерностям симпатической иннервации костно-суставного аппарата, которая осуществляется в первую очередь через питающие костное вещество кровеносные сосуды. Об этом будет в соответствующих местах книги сказано подробнее. Имеются интересные новые наблюдения над результатами хирургического воздействия (предпринятого по поводу заболевания толстой кишки - болезни Гиршспрунга) на поясничные симпатические ганглии - после их удаления, в связи с некоторым временным усилением васкуляризации одной конечности на оперированной стороне, безупречными рентгенологическими методами измерения можно было установить усиление роста в длину этой конечности [Фехи (Fahey)].

Немало работ посвящено также трудной проблеме трофики и нейротрофических воздействий применительно к костной системе. Начало учению о трофическом влиянии нервной системы на внутренние органы положил еще в 1885 г. И. П. Павлов.

Так как термины „трофика”, „трофическая иннервация” понимаются различными авторами по-разному, мы позволим себе привести здесь известное определение самого И. П. Павлова: „По нашему представлению, каждый орган находится под тройным нервным контролем: нервов функциональных, вызывающих или прерывающих его функциональную деятельность (сокращение мускула, секреция железы и т. д.); нервов сосудистых, регулирующих грубую доставку химического материала (и отвод отбросов) в виде большего или меньшего притока крови к органу; и, наконец, нервов трофических, определяющих в интересах организма как целого точный размер окончательной утилизации этого материала каждым органом”.

Обширная литература по вопросу о нервной трофике костей полна противоречий, вытекающих не только из недостаточно точного определения самого понятия, но несомненно из самого существа клинических и экспериментальных наблюдений. Укажем здесь хотя бы на один только вопрос об изменениях хода заживления переломов костей после перерезки нервов, идущих к поврежденной кости. Большинство авторов полагает, что нарушение целости нервов вызывает усиление восстановления костной ткани и развития костеобразования, другие же утверждают, что перерезка нервов вызывает атрофические процессы и замедление консолидации. Д. А. Новожилов на основании веских доводов считает, что вообще основная роль в процессах заживления переломов принадлежит нервным факторам.

Крайне интересными и принципиально важными нам кажутся результаты клинико-рентгенологических исследований А. П. Гущина, изложенных в его вышедшей под нашим руководством в 1945 г. диссертации. А. П. Гущин весьма наглядно показал огромный объем перестройки костей, которая происходит в скелете при костно-суставном туберкулезе вне самого и даже вдали от основного очага поражения, в другой или в других конечностях. Важно, что подобные изменения, своеобразная „генерализация” патологического процесса в костной системе при основном очаговом поражении происходит не только при туберкулезе, но и при других заболеваниях, правда, в гораздо более слабой степени. Автор сумел на основании дополнительных экспериментальных рентгенологических исследований объяснить эти „отраженные” изменения в целостном организме с павловских позиций нервизма. Но богатые возможности, которые таит в себе метод клинической и особенно экспериментальной рентгенологии именно в области изучения трофики костной системы и влияния нервных факторов вообще, далеко не использованы.

Хорошо известны весьма значительные, глубокие изменения роста и развития костного скелета, особенно костей конечностей в результате перенесенного полиомиелита. Рентгенологическая картина этой перестройки, которая складывается из достаточно характерного синдрома атрофии костей, с типичным нарушением как формы, так и структуры, хорошо изучена в СССР (В. П. Грацианский, Р. В. Горяйнова и др.). Имеются указания на отставание роста костей конечности, т. е. укорочение костей на одной стороне, у детей, болевших в прошлом летаргическим энцефалитом [Гаунт (Gaunt)]. Кеффи (Caffey) описывает множественные переломы длинных трубчатых костей, определяемые подчас только рентгенологически, у грудных младенцев, возникающие в результате поражения головного мозга хроническим кровоизлиянием под твердой мозговой оболочкой в связи с родовой травмой.

Значительный интерес представляют также работы 3. Г. Мовсесяна, исследовавшего периферические отделы скелета у 110 больных с сосудистыми заболеваниями головного мозга и обнаружившего у этих больных вторичные нервнотрофические изменения, главным образом остеопороз костей кистей и стоп. А. А. Баженова при изучении 56 больных с тромбозом ветвей средней мозговой артерии и различных последствиях этого тромбоза выявила рентгенологически изменения в костях у 47 человек. Она говорит об определенном гемиостеопорозе, который захватывает все кости парализованной половины тела, причем интенсивность костных трофических изменений в какой-то степени стоит в связи с давностью патологического процесса в центральной нервной системе и тяжестью клинического течения заболевания. По мнению А. А. Баженовой, в этих условиях развиваются также суставные нарушения типа обезображивающего остеоартроза.

Вполне удовлетворительно представлено в современной клинической рентгенодиагностике учение о неврогенных остеоартропатиях, преимущественно при сифилисе центральной нервной системы, при сухотке спинного мозга, а также при сирингомиелии. Правда, мы неизмеримо лучше знаем формально-описательную практическую сторону дела, чем патогенез и морфогенез этих тяжелых костных и главным образом суставных поражений. Наконец, огромный коллективный клинико-рентгенологический опыт участия в обслуживании раненых и больных, пострадавших во время больших войн последнего времени, показал с убедительностью эксперимента весьма разнообразные костные нарушения при ранениях нервной системы - головного мозга, спинного мозга и периферических нервов.

Эти отдельные краткие справки и факты нам здесь понадобились только для того, чтобы сделать один лишь вывод: влияние нервной системы на обменные функции органов движения, на их трофику, фактически существует. Клинически, экспериментально и рентгенологически неопровержимо установлено влияние нервной системы на трофические процессы в костях.

Недостаточно изученной главой остеопатологии в настоящее время остается такой важный раздел, как роль и значение для нормальной и патологической жизнедеятельности костно-суставной системы корковых механизмов. Заслуживает внимания диссертация А. Я. Ярошевского из школы К. М. Быкова. А. Я. Ярошевскому в 1948 г. удалось экспериментально доказать существование кортико-висцеральных рефлексов, которые через интерорецептивные нервные приборы в костном мозгу связывают функцию костного мозга с дыханием, кровяным давлением и другими общими функциями в целостном организме. Костный мозг, стало быть, в этом своем отношении к центральной нервной системе в принципе действительно не отличается от таких внутренних органов, как почка, печень и т. п. А. Я. Ярошевский рассматривает костный мозг длинных трубчатых костей не только как орган кровотворения, но и как орган со второй функцией, а именно как мощное рецептивное поле, откуда через химио- и прессо-рецепторы возникают рефлексы в коре головного мозга. Все взаимосвязи коры большого мозга и костной системы еще не вскрыты, сама функция костетворения в этом аспекте еще не изучена, механизмы кортико-висцеральных связей скелета еще не расшифрованы. В нашем распоряжении еще слишком мало фактического материала. И клиническая рентгенодиагностика на этом пути делает только свои первые шаги. Трудности, которые представляет именно костная система уже хотя бы в силу ее „разбросанности” по всему организму по сравнению с такими собранными пространственно-анатомически воедино органами, как печень, желудок, почки, легкие, сердце и т. п., ясны без лишних пояснений. В этом отношении костная ткань с ее функцией костетворения и многими другими функциями прямо и косвенно сближается с костным мозгом, с его также многочисленными функциями, помимо кровотворения.

Перелом вызывает различные виды циркуляторных расстройств. Он приводит к разрыву кровеносных сосудов, идущих в продольном направлении, открытые концы которых тром-бируются. Кость в непосредственной близости от линии перелома некротизируется. Следующее за этим новообразование кости может привести к появлению демаркационной зоны и секвестров. Кавитация (см. стр.6) в момент возникновения перелома и смещение фрагментов перелома также усиливают сосудистую травму. В любом случае перелом приводит к разрыву продольных кровеносных сосудов кости. Тонкий поверхностный слой кости, жизнеспособность которого поддерживается путем диффузии, прикрывает глубокий слой некровоснабжаемой, некротизированной костной ткани.

Вследствие травмы мягких тканей

Растрескивание надкостницы приводит к повреждению периостального кровотока и, в особенности, к повреждению A. nutricia, которая играет решающую роль в кровоснабжении кости. Расслаивание надкостницы может возникнуть вследствие смещения фрагментов перелома и/или как результат неправильных хирургических действий.

Вследствие контакта с имплантатом

Контакт между имплантатом и костью в любом случае приводит к повреждению ее радиальной перфузии (рис. 1.34) (Rhinelander and Wilson 1982). Gunstetal. (1979) продемонстрировали зависимость повреждения кровоснабжения от контакта с имплантатом, используя метод Luethi et al. (1982), который был разработан для определения зоны контактаимплан-тата (пластины)костью.

Рис. 1.34 Кровоснабжение, перестройка костной ткани и зона остеопороза под пластиной,

А Нарушенное кровоснабжение вследствие давления имплантата.

B Перестройка костной ткани начинается в ограниченной зоне некроза с интактным кровоснабжением и распространяется по направлению к имплантату.

С Участки нормальной кости и зоны перестройки костной ткани, где определяется временный остеопороз. Этот „ранний временный остеопороз" является признаком перестройки гаверсовых каналов с гаверсовыми пластинками (гаверсовой системы).

1.3.2.6 Реакция на нарушение кровоснабжения

Нарушение кортикального кровоснабжения имеет два важных последствия: во-первых, возникает некроз и, во-вторых, затем происходит новообразование кости (рис. 1.34). Новообразование начинается в пределах прилежащей живой кости и распространяется в сторону некротически измененной костной ткани, иногда приводя к удалению и замещению нежизнеспособных участков.

Кровоснабжение сначала нарушается вследствие смещения фрагментов перелома и в результате явлениякавитации во время перелома (см. рис. 1.2). Манипуляции, связанные с репозицией без хирургического вмешательства, могут еще более ухудшить кровоснабжение. Использование наружной шины также ухудшает кровоснабжение, поскольку мягкие ткани остаются без движения. Выделение отломков для открытой репозиции в ходе операции также нарушает циркуляцию. Внутренние шины (например, пластины или гвозди) ухудшают кровоснабжение вследствие их контакта с костью, где они сдавливают кровеносные сосуды, которые входят в или выходят из костной ткани (рис. 1.34). Из экспериментов Rhinelander (1978) и Ganz and Brennwald (1975) мы знаем, что если перелом стабилизирован, то кровообращение в костномозговом канале может восстановиться в течение одной-двух недель. Что касается кровоснабжения, то хирург должен взвесить негативные (операционная травма) и позитивные (более быстрое восстановление кровоснабжения) эффекты различных типов лечения.

Ранний временный остеопороз вблизи имплантатов

Uhthoff et al. (1971), Coutts et al. (1976), Moyen et al. (1978) и Matter et al. (1974) сообщали об изменениях в структуре длинных костей при наличии пластины. Остеопороз был объяснен действием "закона Вольффа" (Wolff 1893,1986), согласно которому кость приспосабливает свою структуру к конкретным механическим условиям нагрузки. Работа Woo et al. (1976) и Claes et al. (1980), как кажется, подтверждает теорию остеопороза, как „защиты от напряжения" в кости, фиксированной пластиной. Tonino etal. (1976) и Taytonet al.(1982) предложили использовать пластины из мягкой пластмассы или углерода для того, что свести к минимуму проявления остеопороза.

Возможное влияние статической компрессии и напряжения на кортикальный слой живой кости было изучено Matter с соавт. (1976). Они не обнаружили статистически достоверного влияния достаточно мощных компрессирующих сил, приложенных к кости, на скорость ее регенерации.

На основе современных экспериментов можно сделать три заключения: ранний временный остеопороз наблюдается в присутствии практически всех имплантатов, включая интрамедуллярные гвозди (рис. 1.35), стержни наружного фиксатора (Pfister et al. 1983), и т.д.

Ранний временный остеопороз тесно взаимосвязан с сосудистыми нарушениями, вызванными операцией и наличием имплантата (т.е. контакта имплантат-кость). На развитие раннего временного остеопороза не оказываает влияния ни один из возможных методов разгрузки (Gautier et al. 1986).

Рис.1.35 Кровоснабжение, перестройка костной ткани и остеопороз вокруг интрамедуллярного гвоздя,

A Нарушение кровоснабжения: крестообразная зона вокруг интрамедуллярного гвоздя.

B Изначальная перестройка в демаркационной зоне между некротизированной и живой костной тканью. Поперечное сечение с окрашенными in vivo дисульфином кровеносными сосудами (с увеличением). В пределах демаркационной зоны видны расширенные канальцы остеонов. Они представляют собой остеоны в процессе перестройки с наличием временного остеопороза.

С Перестройка костной ткани в зоне некроза, распространяющаяся по направлению к гвоздю.

D Скорость и направление процессов перестройки костной ткани определяли при помощи „полихромкой последовательной окраски флюорохромом" (Rahn et al. 1980).

3. Пластмассовые пластины, которые были мягче, чем стандартные металлические пластины, приводили к большему остеопорозу, в противоположность ожиданиям, основанным на механистической теории защиты от напряжения (Gautier et al. 1986). Более мягкая пластина может еще плотнее прилегать к кости и приводить к увеличению сосудистой травмы.

Ранний временный остеопороз исчезает через три месяца после операции, а спустя один год на поперечном сечении кости признаки его не определяются. Некоторые авторы утверждают, что поздние изменения кости вследствие ее разгрузки имплантатом могут привести к рефрактурам (Kessler et al. 1988; Leuet al. 1989). Используя цифровую компьютерную томографию, Cordey et al. (1985) изучал костную структуру большеберцовой кости после удаления пластин у 70 пациентов. Они наблюдали лишь незначительные изменения в костной структуре (менее чем в 20%случаев), причем для получения результатов исследовали и плотность, и форму кости. К моменту удаления пластины онане оказывалась плотно прижатой к кости. Таким образом, шунтирование усилий между костью и пластиной посредством трения со временем терялось, и пластина выполняла функцию разгрузки только в пиковых ситуациях.

Проверяя гипотезу о том, что контакт имплантата с костью и возникающее вследствие этого нарушение кровоснабжения являются причиной раннего остеопороза, Jorger et al. (1987) и Vattolo et al. (1986) изучали немедленные изменения в кровообращении (рис. 1.36) и остеопороз через 3 месяца после имплантации обычных и специальных пластин с бороздками (рис. 1.37). Бороздки уменьшали степень повреждения сосудов и, соответственно, остеопороза, который сопровождается перестройкой гаверсовой системы.

14831 0

Общая характеристика

Несмотря на то, что уровень метаболизма в костной ткани относительно низок, сохранение достаточных источников кровоснабжения играет при костно-пластических операциях исключительно важную роль. Это требует от хирурга знания общих и частных закономерностей кровоснабжения конкретных элементов скелета.

Всего могут быть выделены три источника питания трубчатой кости:
1) питающие диафизарные артерии;
2) питающие эпиметафизарные сосуды;
3) мышечно-надкостничные сосуды.
Питающие диафизарные артерии являются конечными ветвями крупных артериальных стволов.

Как правило, они входят в кость на ее поверхности, обращенной к сосудистому пучку в средней трети диафиза и несколько проксимальнее (табл. 2.4.1) и образуют в кортикальной части канал, идущий в проксимальном или дистальном направлении.

Таблица 2.4.1. Характеристика диафизарчых питающих артерий длинных трубчатых костей


Питающая артерия образует мощную внутрикостную сосудистую сеть, питающую костный мозг и внутреннюю часть кортикальной пластинки (рис. 2.4.1).


Рис. 2.4.1. Схема кровоснабжения трубчатой кости на ее продольном сечении.


Наличие этой внутрикостной сосудистой сети может обеспечить достаточное питание практически всего диафизарного отдела трубчатой кости.

В зоне метафиза внутрикостная диафизар-ная сосудистая сеть соединяется с сетью, образованной эпи- и метафизарными более мелкими питающими артериями (рис.2.4.2).



Рис. 2.4.2. Схема взаимосвязей мышечно-нериостальных и эндостальных источников питания кортикальной кости.


На поверхности любой трубчатой кости имеется разветвленная сосудистая сеть, образованная мелкими сосудами. Основными источниками ее формирования являются: 1) конечные разветвления мышечных артерий; 2) межмышечные сосуды; 3) сегментарные артерии, исходящие непосредственно из магистральных артерий и их ветвей. В связи с малым диаметром этих сосудов они могут обеспечивать питание лишь относительно небольших участков кости.

Микроангиографические исследования показали, что периостальная сосудистая сеть обеспечивает питание преимущественно наружной части кортикального слоя кости, в то время как питающая артерия снабжает костный мозг и внутреннюю часть кортикальной пластинки. Однако клиническая практика свидетельствует о том, что и внутрикостное, и периостальное сосудистые сплетения способны самостоятельно обеспечить жизнеспособность компактной кости на всю ее толщину.

Венозный отток от трубчатых костей обеспечивается через систему сопутствующих артериям вен, которые в длинной трубчатой кости образуют центральный венозный синус. Кровь из последнего удаляется через вены, сопутствующие артериальным сосудам, участвующим в образовании пери- и эндостальной сосудистой сети.

Типы кровоснабжения фрагментов костей с позиций пластической хирургии

Как известно, при вмешательствах на костях наличие достаточных источников их питания обеспечивает сохранение пластических свойств костной ткани. Особенно важную роль решение этой проблемы играет при свободной и несвободной пересадке кровоснабжаемых участков тканей.

В нормальных условиях любой достаточно крупный костный фрагмент имеет, как правило, смешанный тип питания, который существенно изменяется при формировании сложных лоскутов, включающих кость. При этом определенные источники питания становятся доминирующими или даже единственными.

В связи с тем, что костная ткань имеет сравнительно низкий уровень метаболизма, ее жизнеспособность может быть сохранена даже при значительном сокращении числа источников питания. С позиций пластической хирургии, целесообразно выделить 6 основных типов кровоснабжения костных лоскутов. Один из них предполагает наличие внутреннего источника питания (диафизарные питающие артерии), три — наружные источники (ветви мышечных, межмышечных и магистральных сосудов) и два — сочетание Внутренних и наружных сосудов (рис. 2.4.3).



Рис. 2.4.3. Схематическое изображение типов кровоснабжения участков кортикальной кости (объяснение в тексте)
.


Тип 1 (рис. 2.4.3, а) характеризуется внутренним осевым кровоснабжением диафизарного участка кости за счет диафизарной питающей артерии. Последняя может обеспечить жизнеспособность значительного по величине участка кости. Однако в пластической хирургии использование костных лоскутов только с этим типом питания пока не описано.

Тип 2 (рис. 2.4.3, б) отличается наружным питанием участка кости за счет сегментарных ветвей расположенной рядом магистральной артерии.

Выделенный вместе с сосудистым пучком костный фрагмент может иметь значительную величину и быть пересажен в виде островкового или свободного комплекса тканей. В условиях клиники костные фрагменты с этим типом питания могут быть взяты в средней и нижней третях костей предплечья на лучевом или локтевом сосудистых пучках, а также на протяжении некоторых участков диафиза малоберцовой кости.

Тип 3 (рис. 2.4.3, в) характерен для участков, к которым прикрепляются мышцы. Конечные ветви мышечных артерий могут обеспечить наружное питание костного фрагмента, выделенного на мышечном лоскуте. Несмотря на весьма ограниченные возможности его перемещения, этот вариант костной пластики применяют при ложных суставах шейки бедренной кости, ладьевидной кости.

Тип 4 (рис. 2.4.3, г) имеется в участках любой трубчатой кости, расположенных вне зоны прикрепления мышц, на протяжении которых периостальная сосудистая сеть формируется за счет наружных источников — конечных ветвей многочисленных мелких межмышечных и мышечных сосудов. Такие костные фрагменты не могут быть выделены на одном сосудистом пучке и сохраняют свое питание, лишь сохранив свою связь с лоскутом надкостницы и окружающими тканями. В клинике они используются редко.

Тип 5 (рис. 2.4.3, д) встречается при выделении комплексов тканей в эпиметафизарной части трубчатой кости. Для него характерно смешанное питание за счет наличия относительно крупных ветвей магистральных артерий, которые, подходя к кости, отдают мелкие внутрикостные питающие сосуды и периостальные ветви. Типичным примером практического использования этого варианта кровоснабжения костного фрагмента может служить пересадка проксимального отдела малоберцовой кости на верхней нисходящей коленной артерии либо на ветвях переднего большеберцового сосудистого пучка.

Тип 6 (рис. 2.4.3, е) также смешанный. Его характеризует сочетание внутреннего источника питания диафизарной части кости (за счет питающей артерии) и наружных источников — ветвей магистральной артерии и(или) мышечных ветвей. В отличие от костных лоскутов с питанием по типу 5 здесь могут быть взяты крупные участки диафизарной кости на сосудистой ножке значительной длины, которая может быть использована для реконструкции сосудистого русла поврежденной конечности. Пример этому — пересадка малоберцовой кости на малоберцовом сосудистом пучке, пересадка участков лучевой кости на лучевом сосудистом пучке.

Таким образом, на протяжении каждой длинной трубчатой кости в зависимости от расположения сосудистых пучков, мест прикрепления мышц, сухожилий, а также в соответствии с особенностями индивидуальной анатомии имеется свое неповторимое сочетание перечисленных выше источников питания (типов кровоснабжения). Поэтому, с позиций нормальной анатомии, их классификация выглядит искусственной. Однако при выделении лоскутов, включающих кость, число источников питания, как правило, уменьшается. Один-два из них остаются доминирующими, а иногда — единственными.

Хирурги, выделяя и пересаживая комплексы тканей, уже заранее с учетом многих факторов должны спланировать и сохранение источников кровоснабжения включаемой в лоскут кости (наружные, внутренние, их сочетание). В чем большей степени будет сохраняться кровообращение в пересаженном костном фрагменте, тем более высокий уровень репаративиых процессов будет обеспечен в послеоперационном периоде.

Представленная классификация, вероятно, может быть расширена за счет других возможных сочетаний уже описанных типов кровоснабжения участков костей. Однако главное заключается в другом. При данном подходе формирование костного лоскута на сосудистом пучке в виде островкового или свободного возможно для типов питания костных фрагментов 1, 2, 5, и 6 и исключено при типах 3 и 4.

В первом случае хирург имеет относительно большую свободу действий, что позволяет ему осуществлять пересадку костных комплексов тканей в любую область человеческого тела с восстановлением их кровообращения путем наложения микрососудистых анастомозов. Следует также отметить, что типы питания 1 и б могли бы быть объединены, тем более, что тип 1 как самостоятельный в клинической практике пока не использовался. Однако большие возможности диафизарных питающих артерий, несомненно, будут использованы хирургами в будущем.

Значительно меньше возможностей для перемещения кровоснабжаемых участков костей имеется при типах кровоснабжения 3 и 4. Эти фрагменты могут перемещаться лишь на относительно малое расстояние на широкой тканевой ножке.

Таким образом, предлагаемая классификация типов кровоснабжения костных комплексов тканей имеет прикладное значение и предназначена прежде-всего для того, чтобы вооружить пластических хирургов пониманием принципиальных особенностей конкретной пластической операции.



gastroguru © 2017